首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the problem of determining the number of clusters in the k-modes based categorical data clustering process. We propose a new categorical data clustering algorithm with automatic selection of k. The new algorithm extends the k-modes clustering algorithm by introducing a penalty term to the objective function to make more clusters compete for objects. In the new objective function, we employ a regularization parameter to control the number of clusters in a clustering process. Instead of finding k directly, we choose a suitable value of regularization parameter such that the corresponding clustering result is the most stable one among all the generated clustering results. Experimental results on synthetic data sets and the real data sets are used to demonstrate the effectiveness of the proposed algorithm.  相似文献   

2.
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies is a useful tool for identifying biologically relevant gene groupings (DeRisi et al. 1997; Weiler et al. 1997). It is hence important to apply a rigorous yet intuitive clustering algorithm to uncover these genomic relationships. In this study, we describe a novel clustering algorithm framework based on a variant of the Generalized Benders Decomposition, denoted as the Global Optimum Search (Floudas et al. 1989; Floudas 1995), which includes a procedure to determine the optimal number of clusters to be used. The approach involves a pre-clustering of data points to define an initial number of clusters and the iterative solution of a Linear Programming problem (the primal problem) and a Mixed-Integer Linear Programming problem (the master problem), that are derived from a Mixed Integer Nonlinear Programming problem formulation. Badly placed data points are removed to form new clusters, thus ensuring tight groupings amongst the data points and incrementing the number of clusters until the optimum number is reached. We apply the proposed clustering algorithm to experimental DNA microarray data centered on the Ras signaling pathway in the yeast Saccharomyces cerevisiae and compare the results to that obtained with some commonly used clustering algorithms. Our algorithm compares favorably against these algorithms in the aspects of intra-cluster similarity and inter-cluster dissimilarity, often considered two key tenets of clustering. Furthermore, our algorithm can predict the optimal number of clusters, and the biological coherence of the predicted clusters is analyzed through gene ontology.  相似文献   

3.
Mean-shift is an iterative procedure often used as a nonparametric clustering algorithm that defines clusters based on the modal regions of a density function. The algorithm is conceptually appealing and makes assumptions neither about the shape of the clusters nor about their number. However, with a complexity of O(n2) per iteration, it does not scale well to large datasets. We propose a novel algorithm which performs density-based clustering much quicker than mean shift, yet delivering virtually identical results. This algorithm combines subsampling and a stochastic approximation procedure to achieve a potential complexity of O(n) at each step. Its convergence is established. Its performances are evaluated using simulations and applications to image segmentation, where the algorithm was tens or hundreds of times faster than mean shift, yet causing negligible amounts of clustering errors. The algorithm can be combined with existing approaches to further accelerate clustering.  相似文献   

4.
k-Plane Clustering   总被引:12,自引:0,他引:12  
A finite new algorithm is proposed for clustering m given points in n-dimensional real space into k clusters by generating k planes that constitute a local solution to the nonconvex problem of minimizing the sum of squares of the 2-norm distances between each point and a nearest plane. The key to the algorithm lies in a formulation that generates a plane in n-dimensional space that minimizes the sum of the squares of the 2-norm distances to each of m1 given points in the space. The plane is generated by an eigenvector corresponding to a smallest eigenvalue of an n × n simple matrix derived from the m1 points. The algorithm was tested on the publicly available Wisconsin Breast Prognosis Cancer database to generate well separated patient survival curves. In contrast, the k-mean algorithm did not generate such well-separated survival curves.  相似文献   

5.
The field of cluster analysis is primarily concerned with the sorting of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the hard clustering problem, where each data point is to be assigned to exactly one cluster. The hard clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities that serve to defeat the inherent symmetry in the problem. This construct is embedded within a specialized branch-and-bound algorithm to solve the problem to global optimality. Pertinent implementation issues that can enhance the efficiency of the branch-and-bound algorithm are also discussed. Computational experience is reported using several standard data sets found in the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular k-means clustering technique. Finally, a heuristic procedure to obtain a good quality solution at a relative ease of computational effort is also described.  相似文献   

6.
The partitioning clustering is a technique to classify n objects into k disjoint clusters, and has been developed for years and widely used in many applications. In this paper, a new overlapping cluster algorithm is defined. It differs from traditional clustering algorithms in three respects. First, the new clustering is overlapping, because clusters are allowed to overlap with one another. Second, the clustering is non-exhaustive, because an object is permitted to belong to no cluster. Third, the goals considered in this research are the maximization of the average number of objects contained in a cluster and the maximization of the distances among cluster centers, while the goals in previous research are the maximization of the similarities of objects in the same clusters and the minimization of the similarities of objects in different clusters. Furthermore, the new clustering is also different from the traditional fuzzy clustering, because the object–cluster relationship in the new clustering is represented by a crisp value rather than that represented by using a fuzzy membership degree. Accordingly, a new overlapping partitioning cluster (OPC) algorithm is proposed to provide overlapping and non-exhaustive clustering of objects. Finally, several simulation and real world data sets are used to evaluate the effectiveness and the efficiency of the OPC algorithm, and the outcomes indicate that the algorithm can generate satisfactory clustering results.  相似文献   

7.
We propose minimum volume ellipsoids (MVE) clustering as an alternative clustering technique to k-means for data clusters with ellipsoidal shapes and explore its value and practicality. MVE clustering allocates data points into clusters in a way that minimizes the geometric mean of the volumes of each cluster’s covering ellipsoids. Motivations for this approach include its scale-invariance, its ability to handle asymmetric and unequal clusters, and our ability to formulate it as a mixed-integer semidefinite programming problem that can be solved to global optimality. We present some preliminary empirical results that illustrate MVE clustering as an appropriate method for clustering data from mixtures of “ellipsoidal” distributions and compare its performance with the k-means clustering algorithm as well as the MCLUST algorithm (which is based on a maximum likelihood EM algorithm) available in the statistical package R. Research of the first author was supported in part by a Discovery Grant from NSERC and a research grant from Faculty of Mathematics, University of Waterloo. Research of the second author was supported in part by a Discovery Grant from NSERC and a PREA from Ontario, Canada.  相似文献   

8.
Automatic clustering using genetic algorithms   总被引:2,自引:0,他引:2  
In face of the clustering problem, many clustering methods usually require the designer to provide the number of clusters as input. Unfortunately, the designer has no idea, in general, about this information beforehand. In this article, we develop a genetic algorithm based clustering method called automatic genetic clustering for unknown K (AGCUK). In the AGCUK algorithm, noising selection and division-absorption mutation are designed to keep a balance between selection pressure and population diversity. In addition, the Davies-Bouldin index is employed to measure the validity of clusters. Experimental results on artificial and real-life data sets are given to illustrate the effectiveness of the AGCUK algorithm in automatically evolving the number of clusters and providing the clustering partition.  相似文献   

9.
We apply the cross-entropy (CE) method to problems in clustering and vector quantization. The CE algorithm for clustering involves the following iterative steps: (a) generate random clusters according to a specified parametric probability distribution, (b) update the parameters of this distribution according to the Kullback–Leibler cross-entropy. Through various numerical experiments, we demonstrate the high accuracy of the CE algorithm and show that it can generate near-optimal clusters for fairly large data sets. We compare the CE method with well-known clustering and vector quantization methods such as K-means, fuzzy K-means and linear vector quantization, and apply each method to benchmark and image analysis data.  相似文献   

10.
A modified approach had been developed in this study by combining two well-known algorithms of clustering, namely fuzzy c-means algorithm and entropy-based algorithm. Fuzzy c-means algorithm is one of the most popular algorithms for fuzzy clustering. It could yield compact clusters but might not be able to generate distinct clusters. On the other hand, entropy-based algorithm could obtain distinct clusters, which might not be compact. However, the clusters need to be both distinct as well as compact. The present paper proposes a modified approach of clustering by combining the above two algorithms. A genetic algorithm was utilized for tuning of all three clustering algorithms separately. The proposed approach was found to yield both distinct as well as compact clusters on two data sets.  相似文献   

11.
In the present paper we discuss a new clustering procedure in the case where instead of a single metric we have a family of metrics. In this case we can obtain a partially ordered graph of clusters which is not necessarily a tree. We discuss a structure of a hypergraph above this graph. We propose two definitions of dimension for hyperedges of this hypergraph and show that for the multidimensional p-adic case both dimensions are reduced to the number of p-adic parameters.We discuss the application of the hypergraph clustering procedure to the construction of phylogenetic graphs in biology. In this case the dimension of a hyperedge will describe the number of sources of genetic diversity.  相似文献   

12.
Digital circuits have grown exponentially in their sizes over the past decades. To be able to automate the design of these circuits, efficient algorithms are needed. One of the challenging stages of circuit design is the physical design where the physical locations of the components of a circuit are determined. Coarsening or clustering algorithms have become popular with physical designers due to their ability to reduce circuit sizes in the intermediate design steps such that the design can be performed faster and with higher quality. In this paper, a new clustering algorithm based on the algebraic multigrid (AMG) technique is presented. In the proposed algorithm, AMG is used to assign weights to connections between cells of a circuit and find cells that are best suited to become the initial cells for clusters, seed cells. The seed cells and the weights between them and the other cells are then used to cluster the cells of a circuit. The analysis of the proposed algorithm proves linear-time complexity, O(N), where N is the number of pins in a circuit. The numerical experiments demonstrate that AMG-based clustering can achieve high quality clusters and improve circuit placement designs with low computational cost.  相似文献   

13.
Clustering is a popular data analysis and data mining technique. Since clustering problem have NP-complete nature, the larger the size of the problem, the harder to find the optimal solution and furthermore, the longer to reach a reasonable results. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent the clusters well. A large area of research in clustering has focused on improving the clustering process such that the clusters are not dependent on the initial identification of cluster representation. Another problem about clustering is local minimum problem. Although studies like K-Harmonic means clustering solves the initialization problem trapping to the local minima is still a problem of clustering. In this paper we develop a new algorithm for solving this problem based on a tabu search technique—Tabu K-Harmonic means (TabuKHM). The experiment results on the Iris and the other well known data, illustrate the robustness of the TabuKHM clustering algorithm.  相似文献   

14.
In this paper, at first a new line symmetry (LS) based distance is proposed which calculates the amount of symmetry of a point with respect to the first principal axis of a data set. The proposed distance uses a recently developed point symmetry (PS) based distance in its computation. Kd-tree based nearest neighbor search is used to reduce the complexity of computing the closest symmetric point. Thereafter an evolutionary clustering technique is described that uses this new principal axis based LS distance for assignment of points to different clusters. The proposed GA with line symmetry distance based (GALS) clustering technique is able to detect any type of clusters, irrespective of their geometrical shape, size or convexity as long as they possess the characteristics of LS. GALS is compared with the existing genetic algorithm based K-means clustering technique, GAK-means, existing genetic algorithm with PS based clustering technique, GAPS, spectral clustering technique, and average linkage clustering technique. Five artificially generated data sets having different characteristics and seven real-life data sets are used to demonstrate the superiority of the proposed GALS clustering technique. In a part of experiment, utility of the proposed genetic LS distance based clustering technique is demonstrated for segmenting the satellite image of the part of the city of Kolkata. The proposed technique is able to distinguish different landcover types in the image. In the last part of the paper genetic algorithm is used to search for the suitable line of symmetry of each cluster.  相似文献   

15.
Sequential clustering aims at determining homogeneous and/or well-separated clusters within a given set of entities, one at a time, until no more such clusters can be found. We consider a bi-criterion sequential clustering problem in which the radius of a cluster (or maximum dissimilarity between an entity chosen as center and any other entity of the cluster) is chosen as a homogeneity criterion and the split of a cluster (or minimum dissimilarity between an entity in the cluster and one outside of it) is chosen as a separation criterion. An O(N 3) algorithm is proposed for determining radii and splits of all efficient clusters, which leads to an O(N 4) algorithm for bi-criterion sequential clustering with radius and split as criteria. This algorithm is illustrated on the well known Ruspini data set.  相似文献   

16.
A clustering method is presented for analysing multivariate binary data with missing values. When not all values are observed, Govaert3 has studied the relations between clustering methods and statistical models. The author has shown how the identification of a mixture of Bernoulli distributions with the same parameter for all clusters and for all variables corresponds to a clustering criterion which uses L1 distance characterizing the MNDBIN method (Marchetti8). He first generalized this model by selecting parameters which can depend on variables and finally by selecting parameters which can depend both on variables and on clusters. We use the previous models to derive a clustering method adapted to missing data. This method optimizes a criterion by a standard iterative partitioning algorithm which removes the necessity either to ignore objects or to substitute the missing data. We study several versions of this algorithm and, finally, a brief account is given of the application of this method to some simulated data.  相似文献   

17.
Exploratory graphical tools based on trimming are proposed for detecting main clusters in a given dataset. The trimming is obtained by resorting to trimmed k-means methodology. The analysis always reduces to the examination of real valued curves, even in the multivariate case. As the technique is based on a robust clustering criterium, it is able to handle the presence of different kinds of outliers. An algorithm is proposed to carry out this (computer intensive) method. As with classical k-means, the method is specially oriented to mixtures of spherical distributions. A possible generalization is outlined to overcome this drawback.  相似文献   

18.
An appropriate distance is an essential ingredient in various real-world learning tasks. Distance metric learning proposes to study a metric, which is capable of reflecting the data configuration much better in comparison with the commonly used methods. We offer an algorithm for simultaneous learning the Mahalanobis like distance and K-means clustering aiming to incorporate data rescaling and clustering so that the data separability grows iteratively in the rescaled space with its sequential clustering. At each step of the algorithm execution, a global optimization problem is resolved in order to minimize the cluster distortions resting upon the current cluster configuration. The obtained weight matrix can also be used as a cluster validation characteristic. Namely, closeness of such matrices learned during a sample process can indicate the clusters readiness; i.e. estimates the true number of clusters. Numerical experiments performed on synthetic and on real datasets verify the high reliability of the proposed method.  相似文献   

19.
The field of cluster analysis is primarily concerned with the partitioning of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the fuzzy clustering problem, where each data point is to be assigned to (possibly) several clusters, with a membership grade assigned to each data point that reflects the likelihood of the data point belonging to that cluster. The fuzzy clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities. This construct is embedded within a specialized branch-and-bound (B&B) algorithm to solve the problem to global optimality. Computational experience is reported using several standard data sets from the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular fuzzy c-means algorithmic technique and the commercial global optimizer BARON.  相似文献   

20.
A k-means-type algorithm is proposed for efficiently clustering data constrained to lie on the surface of a p-dimensional unit sphere, or data that are mean-zero-unit-variance standardized observations such as those that occur when using Euclidean distance to cluster time series gene expression data using a correlation metric. We also provide methodology to initialize the algorithm and to estimate the number of clusters in the dataset. Results from a detailed series of experiments show excellent performance, even with very large datasets. The methodology is applied to the analysis of the mitotic cell division cycle of budding yeast dataset of Cho et al. [Molecular Cell (1998), 2, 65–73]. The entire dataset has not been analyzed previously, so our analysis provides an understanding for the complete set of genes acting in concert and differentially. We also use our methodology on the submitted abstracts of oral presentations made at the 2008 Joint Statistical Meetings (JSM) to identify similar topics. Our identified groups are both interpretable and distinct and the methodology provides a possible automated tool for efficient parallel scheduling of presentations at professional meetings.

The supplemental materials described in the article are available in the online supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号