首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
变深度浅水域中非定常船波   总被引:1,自引:0,他引:1  
陈波  吴建康 《力学学报》2003,35(1):64-68
以Green—Naghdi(G—N)方程为基础,采用波动方程/有限元法计算船舶经过变深度浅水域时非定常波浪特性.把运动船舶对水面的扰动作为移动压强直接加在Green-Naghdi方程里,以描述运动船体和水面的相互作用.以Series60 CB=0.6船为算例,给出自由面坡高,波浪阻力在船舶经过一个水下凸包时变化规律,并与浅水方程的结果进行了比较.计算结果表明,当船舶经过凸包时,波浪阻力先增加,后减少,并逐渐趋于正常.同时发现,当船速小于临界速度时(Fr=√gh<1.0),G—N方程给出的船后尾波比浅水方程的结果明显,波浪阻力也比浅水方程的结果有所提高,频率散射必须考虑.当船速大于临界速度时(Fr=√gh>1.0),G—N方程的计算结果与浅水方程差别不大,频率散射的影响可以忽略.  相似文献   

2.
The properties of harmonic surface waves in a fluid-filled cylinder made of a compliant material are studied. The wave motions are described by a complete system of dynamic equations of elasticity and the equation of motion of a perfect compressible fluid. An asymptotic analysis of the dispersion equation for large wave numbers and a qualitative analysis of the dispersion spectrum show that there are two surface waves in this waveguide system. The first normal wave forms a Stoneley wave on the inside surface with increase in the wave number. The second normal wave forms a Rayleigh wave on the outside surface. The phase velocities of all the other waves tend to the velocity of the shear wave in the cylinder material. The dispersion, kinematic, and energy characteristics of surface waves are analyzed. It is established how the wave localization processes differ in hard and compliant materials of the cylinder __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 72–86, April 2008.  相似文献   

3.
We analyze the propagation of piezoelectromagnetic waves guided by a plate of polarized ceramics between two ceramic half-spaces. An exact dispersion relation is obtained, which reduces to a few known elastic, electromagnetic, and quasistatic piezoelectric wave solutions in the literature as special cases. Numerical solutions to the equation that determines the dispersion relation show the existence of guided waves. The results are useful for acoustic wave and microwave devices.  相似文献   

4.
The propagation and properties of Rayleigh waves on curved surfaces are investigated theoretically. The Rayleigh wave dispersion equation for propagation on a curved surface is derived as a parabolic equation, and its penetration depth is analyzed using the curved surface boundary. Reciprocity is introduced to model the diffracted Rayleigh wave beams. Simulations of Rayleigh waves on some canonical curved surfaces are carried out, and the results are used to quantify the influence of curvature. It is found that the velocity of the surface wave increases with greater concave surface curvature, and a Rayleigh wave no longer exists once the surface wave velocity exceeds the bulk shear wave velocity. Moreover, the predicted wave penetration depth indicates that the energy in the Rayleigh wave is transferred to other modes and cannot propagate on convex surfaces with large curvature. A strong directional dependence is observed for the propagation of Rayleigh waves in different directions on surfaces with complex curvatures. Thus, it is important to include dispersion effects when considering Rayleigh wave propagation on curved surfaces.  相似文献   

5.
The present Note describes some experimental work related to the nonlinear propagation of acoustic waves in granular media such as unconsolidated glass beads. The studied nonlinear effect is a self-demodulation process performed with the operation of the so-called parametric transmitting antenna. The pump (or carrier) wave is generated by a high power ultrasonic broad-band transducer (100 kHz central frequency) which is LF (low frequency, i.e., a few kHz) amplitude modulated. As the attenuation of acoustic waves increases with frequency, only the LF demodulated wave can be transmitted. A parametric study is performed where the HF central frequency is monitored between 60 and 300 kHz. The LF demodulation profile versus the HF frequency is modified, its shape being temporally derived almost twice. A numerical analysis of the order of temporal derivation is done in the Fourier domain, its value varying from 1.25 to 2.7. Qualitative agreement with current theoretical models is described, and an advanced theoretical analysis by the same authors [Phys. Rev. E 66 (2002) 041303], taking into account absorption, nonlinearity, dispersion and scattering, is briefly discussed. To cite this article: V. Tournat et al., C. R. Mecanique 331 (2003).  相似文献   

6.
《力学快报》2020,10(2):74-78
This study focuses on the propagation of the plane wave in the elastoplastic unsaturated granular media, and the wave equations and dispersion equations are derived for the media under the framework of Cosserat theory. Due to symmetry, five different wave modes are considered and predicted for the elastoplastic unsaturated granular media based on the Cosserat theory, including two longitudinal waves, one rotational longitudinal wave and two coupled transverse–rotational transverse waves. The correspondence is discussed between these Cosserat wave modes and the classical wave modes. Based on the dispersion equations, the dispersion behaviors are obtained for the five Cosserat wave modes. The results indicated that the different stress-strain stages,including the elastic, hardening and softening stages, have obvious effect on the dispersion behaviors of the Cosserat wave modes.  相似文献   

7.
The present paper studies the propagation of shear waves (SH-type waves) in an homogeneous isotropic medium sandwiched between two semi infinite media. The upper half-space is considered as orthotropic medium under initial stress and lower half-space considered as heterogeneous medium. We have obtained the dispersion equation of phase velocity for SH-type waves. The propagation of SH-type waves are influenced by inhomogeneity parameters and initial stress parameter. The velocity of SH-type wave has been computed for different cases. We have also obtained the dispersion equation of phase velocity in homogeneous media in the absence of initial stress. The velocities of SH-type waves are calculated numerically as a function of kH (non-dimensional wave number) and presented in a number of graphs. To study the effect of inhomogeneity parameters and initial stress parameter we have plotted the velocity of SH-type wave in several figure. We have observed that the velocity of wave increases with the increase inhomogeneity parameters. We found that in both homogeneous and inhomogeneous media the velocity of SH-type wave increases with the increase of initial stress parameter. The results may be useful for the study of seismic waves propagation during any earthquake and artificial explosions.  相似文献   

8.
Methods based on guided ultrasonic waves are gaining increasing attention for the non-destructive inspection and condition monitoring of multi-wire strands used in civil structures such as prestressing tendons and cable stays. In this paper we examine the wave propagation problem in seven-wire strands at the level of the individual wires comprising the strand. Through a broad-band, laser ultrasonic setup and a time—frequency wavelet transform processing, longitudinal and flexural waves are characterized in terms of dispersive velocity and frequency-dependent attenuation. These vibrating frequencies propagating with minimal losses are identified as they are suitable for long-range inspection of the strands. In addition, the wave transmission spectra are found to be sensitive to the load level, suggesting the potential for continuous load monitoring in the field.  相似文献   

9.
The propagation of elastic waves in piezoceramic cylindrical waveguides of circular cross-sections with sector cut is investigated on the basis of the linear theory of electroelasticity. Dispersion functions are obtained from boundary conditions in an analytical form of functional determinants for each value of the generalized wave number. A selected set of numerical results including real, imaginary and complex branches of full dispersion spectrums with various symmetry of wave movements is presented to describe the essential characteristics of the waves. Leading effects of spectrums transformation by change of waveguide’s angular measure are enlightened, and wave asymptotic behavior is analyzed. The variation of the cross-section is considered as a mechanism to control the dispersion characteristics of waveguides.  相似文献   

10.
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper. A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived. A dimensionless memory (time) number 0 is introduced. The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0. The complex dispersion equation is numerically solved to investigate the dispersion relation. The influences of θ and water depth on the dispersion characteristics and wave decay are discussed. It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.  相似文献   

11.
冯勇明  周丽 《爆炸与冲击》2012,32(3):259-266
基于Lamb波和匹配追踪算法,提出了一种损伤成像方法,对复合材料冲击损伤进行在线的连续 监测。首先针对Lamb波监测的特点,提出了匹配追踪方法的快速实现方案,将信号分解为多个Chirplet原 子的线性组合,建立了Lamb的弥散效应与Chirplet原子的调频斜率之间的关系,模拟结果表明Chirplet原 子能准确地匹配失真变形的窄带脉冲信号;根据损伤前与损伤后的信号差别,提出了一种基于Lamb波能量 特征差异提取的损伤指标;进一步采用改进的RAPID算法进行损伤成像,将损伤情况可视化。结果表明所 提方法可行和有效。  相似文献   

12.
Internal waves from a body accelerating in a thermocline   总被引:1,自引:0,他引:1  
Many papers study the steady wave system around bodies moving in thermoclines but little attention has been given to unsteady wave systems. This paper concentrates on the unsteady wave systems around accelerating bodies in thermoclines. The wave shapes are calculated using a theory derived from a dispersion relation based on an exp-tanh density profile. All modes of oscillation can be determined and it is shown that for the lowest mode both oblique and transverse waves occur whereas for the higher modes the presence of transverse waves depends on the background conditions and on the speed of the body. Cauchy-Poisson impulsive start waves are included. The theoretical wave shapes compare quite well with those calculated using finite-difference formulations of the full Navier-Stokes equations when a body accelerates from rest.It is also shown how the dispersion relation =N sin together with the WKB approximation can produce the same plan-view wave forms as those obtained using the thermocline wave dispersion relation given by [17, 30].  相似文献   

13.
纳米科技的快速发展使压电纳米结构在纳米机电系统中得到广泛应用,形成了诸如纳米压电电子学等新的研究方向.与传统的宏观压电材料相比,在纳米尺度下压电材料往往呈现出不同的力学特性,而造成这种差异的原因之一便是表面效应.本文基于Stroh公式、Barnett-Lothe积分矩阵及表面阻抗矩阵,研究计入表面效应的任意各向异性压电半空间中的表面波传播问题,导出了频散方程.针对横观各向同性压电材料,假设矢状平面平行于材料各向同性面,发现Rayleigh表面波和B-G波解耦,并得到各自的显式频散方程.结果表明,Rayleigh表面波的波速小于偏振方向垂直于表面的体波,而B-G波的波速小于偏振方向垂直于矢状平面的体波.以PZT-5H材料为例,用数值方法考察表面残余应力和电学边界条件对表面波频散特性的影响发现:表面残余应力只对第一阶Rayleigh波有明显的影响;电学开路情形的B-G波比电学闭路情形的B-G波传播快.本文工作可为纳米表面声波器件的设计或压电纳米结构的无损检测提供理论依据.  相似文献   

14.
姚磊  李永池 《爆炸与冲击》2007,27(4):345-351
对应力波在变截面体中的传播特性进行了理论研究和数值分析。以杆中一维纵波波动理论和谐波分析法为基础,研究截面变化所导致的应力波的波形弥散和波幅变化。推导了与截面变化相关的应力波演化因子,并对由于截面变化所造成的几何弥散等二维效应进行了分析,同时计算了变截面体的几何特征参数和截面变化等因素影响应力波演化规律的特点。  相似文献   

15.
With the advent of left-handed magnetic materials, it is desirable to develop high-performance wave devices based on their novel properties of wave propagation. This letter reports the special properties of elastic wave propagation in magnetoelastic multilayered composites with negative permeability as comparecd to those in counterpart structures with positlve permeability. These novel properties of elastic waves are discerned from the diversified dispersion curves, which represent the propagation and attenuation characteristics of elastic waves. To compute these dispersion curves, the method of reverberation-ray matrix is extended for the analysis of elastic waves in magnctoelastic multilayered composites. Although only the results of a single piezomagnetic and a binary magnetoelastic layers with mechanically free and magnetically short surfaces as well as pelrfect interface are illustrated in the numerical examples, the analysis is applicable lo magnetoelastic multilayered structures with other kinds of boundaries/interfaces.  相似文献   

16.
The propagation of stress waves in pyramids was studied photoelastically with the application of a laser-photomultiplier tube system and an internal polariscope for recording moving fringes. Dispersion and attenuation of stress waves were considered in a straight bar, a 5-deg pyramid, and a 20-deg pyramid made of Hysol 4290 epoxy plastic. In the straight bar and 5-deg pyramid, longitudinal waves propagate without any dispersion even though the waves attenuate as they progress down the models; in the 20-deg pyramid, however, the dispersion of the stress waves is quite significant. The distributions of the axial and radial stresses and the photoelastic fringe patterns obtained on the 20-deg pyramid show that the stress wave front is spherical with the maximum stress along the central axis of the pyramid. A one-dimensional theory of wave propagation without correction factors in a small-angle infinite cone compares well with the experimental results.  相似文献   

17.
Propagation of SH waves in an irregular monoclinic crustal layer   总被引:2,自引:0,他引:2  
The present paper discusses the dispersion equation for SH waves in a monoclinic layer over a semi-infinite elastic medium with an irregularity. In the absence of the irregularity, the dispersion equation reduces to standard dispersion equation for SH waves in a monoclinic layer over an isotropic semi-infinite medium. The dispersion curves for different size of the irregularity are computed and compared for the half-space without any irregularity. It can be seen that the phase velocity is strongly influenced by the wave number and the depth of the irregularity.  相似文献   

18.
A characteristic equation is derived that describes the spatial decay of linear surface gravity waves on Maxwell fluids. Except at small frequencies, the derived dispersion relation is different from the temporal decay dispersion relation which is normally studied within fluid mechanics. The implications for waves on viscous Newtonian fluids using the two different dispersion relations is briefly discussed. The wave number is measured experimentally as function of the frequency in a horizontal canal. Seven Newtonian fluids and four viscoelastic liquids with constant viscosity have been used in the experiments. The spatial decay theory for Newtonian fluids fits well to the experimental data. The model and experiments are used to determine limits for the Maxwell fluid time numbers for the four viscoelastic liquids. As a result of low viscosity it was not possible within this study to obtain these time numbers from oscillatory experiments. Therefore, a comparison of surface gravity wave experiments with theory is applicable as a method to evaluate memory times of low viscosity viscoelastic fluids.  相似文献   

19.
Nonlinear wave propagation in solids and material structures provides a physical basis to derive nonlinear canonical equations which govern disparate phenomena such as vortex filaments, plasma waves, and traveling loops. Nonlinear waves in solids however remain a challenging proposition since nonlinearity is often associated with irreversible processes, such as plastic deformations. Finite deformations, also a source of nonlinearity, may be reversible as for hyperelastic materials. In this work, we consider geometric bucking as a source of reversible nonlinear behavior. Namely, we investigate wave propagation in initially compressed and post-buckled structures with linear-elastic material behavior. Such structures present both intrinsic dispersion, due to buckling wavelengths, and nonlinear behavior. We find that dispersion is strongly dependent on pre-compression and we compute waves with a dispersive front or tail. In the case of post-buckled structures with large initial pre-compression, we find that wave propagation is well described by the KdV equation. We employ finite-element, difference-differential, and analytical models to support our conclusions.  相似文献   

20.
弹性波在岩体中传播时与岩体缺陷相互作用形成复杂的传播图案。为研究缺陷对弹性波多次散射作用的影响,建立了双椭圆缺陷模型,基于Green函数基本解,采用边界积分的计算方法,得到了反映缺陷界面条件的刚度矩阵,分析了弹性波在双椭圆缺陷间的多次散射效应。结果表明:与单椭圆缺陷模型相比,双缺陷的相互作用使得弹性波频散和衰减效应增强,定量给出了缺陷的影响区域,从而明确了多次散射效应的尺度界限。进一步探讨了弹性波传播的多尺度效应,结果表明频散的Rayleigh峰、Mie峰和衰减的峰值频率同椭圆长轴和入射波波长两个尺度密切相关,存在明确的定量关系。相应的数值模拟结果表明,弹性波和缺陷相互作用在缺陷界面上诱发界面波,该界面波也存在频率相关性,影响了弹性波宏观传播的频散和衰减特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号