首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cation-templated self-assembly of the lipophilic isoguanosine (isoG 1) with different monovalent cations (M(+)=Li(+), Na(+), K(+), NH(4) (+), and Cs(+)) was studied in solvents of different polarity by using diffusion NMR spectroscopy. Previous studies that did not use diffusion NMR techniques concluded that isoG 1 forms both pentamers (isoG 1)(5)M(+) and decamers (isoG 1)(10)M(+) in the presence of alkali-metal cations. The present diffusion NMR studies demonstrate, however, that isoG 1 does not form (isoG 1)(5)M(+) pentamers. In fact, the diffusion NMR data indicates that both doubly charged decamers of formula (isoG 1)(10)2 M(+) and singly charged decamers, (isoG 1)(10)M(+), are formed with lithium, sodium, potassium, and ammonium tetraphenylborate salts (LiB(Ph)(4), KB(Ph)(4), NaB(Ph)(4) and NH(4)B(Ph)(4)), depending on the isoG 1:salt stoichiometry of the solution. In the presence of CsB(Ph)(4), isoG 1 affords only the singly charged decamers (isoG 1)(10)Cs(+). By monitoring the diffusion coefficient of the B(Ph)(4) (-) ion in the different mixtures of solvents, we also concluded that the anion is more strongly associated to the doubly charged decamers (isoG 1)(10)2 M(+) than to the singly charged decamers (isoG 1)(10)M(+). The (isoG 1)(10)2 M(+) species can, however, exist in solution without the mediation of the anion. This last conclusion was supported by the finding that the doubly charged decamers (isoG 1)(10)2 M(+) also prevail in 1:1 CD(3)CN:CDCl(3), a solvent mixture in which the B(Ph)(4) (-) ion does not interact significantly with the self-assembled complex. These diffusion measurements, which have provided new and improved structural information about these decameric isoG 1 assemblies, demonstrate the utility of combining diffusion NMR techniques with conventional NMR methods in seeking to characterize labile, multicomponent, supramolecular systems in solution, especially those with high symmetry.  相似文献   

2.
The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations. Clear liquid can be obtained by simply mixing glyme (triglyme or tetraglyme) with lithium bis(trifluoromethylsulfonyl)amide (Li[TFSA]) in a molar ratio of 1:1. The equimolar complex [Li(triglyme or tetraglyme)(1)][TFSA] maintains a stable liquid state over a wide temperature range and can be regarded as a room-temperature ionic liquid consisting of a [Li(glyme)(1)](+) complex cation and a [TFSA](-) anion, exhibiting high self-dissociativity (ionicity) at room temperature. The electrochemical oxidation of [Li(glyme)(1)][TFSA] takes place at the electrode potential of ~5 V vs Li/Li(+), while the oxidation of solutions containing excess glyme molecules ([Li(glyme)(x)][TFSA], x > 1) occurs at around 4 V vs Li/Li(+). This enhancement of oxidative stability is due to the donation of lone pairs of ether oxygen atoms to the Li(+) cation, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations. The solvation state of a Li(+) cation and ion conduction mechanism in the [Li(glyme)(x)][TFSA] solutions is elucidated by means of nuclear magnetic resonance (NMR) and electrochemical methods. The experimental results strongly suggest that Li(+) cation conduction in the equimolar complex takes place by the migration of [Li(glyme)(1)](+) cations, whereas the ligand exchange mechanism is overlapped when interfacial electrochemical reactions of [Li(glyme)(1)](+) cations occur. The ligand exchange conduction mode is typically seen in a lithium battery with a configuration of [Li anode|[Li(glyme)(1)][TFSA]|LiCoO(2) cathode] when the discharge reaction of a LiCoO(2) cathode, that is, desolvation of [Li(glyme)(1)](+) and insertion of the resultant Li(+) into the cathode, occurs at the electrode-electrolyte interface. The battery can be operated for more than 200 charge-discharge cycles in the cell voltage range of 3.0-4.2 V, regardless of the use of ether-based electrolyte, because the ligand exchange rate is much faster than the electrode reaction rate.  相似文献   

3.
The extraction of uranyl from acidic (HNO(3)) aqueous solutions toward an ionic liquid phase, C(1)-C(4)-imTf(2)N (1-methyl,3-butylimidazolium Tf(2)N), has been investigated as a function of initial acid concentration and ligand concentration for two different extracting moieties: a classical malonamide, N,N'-dimethyl-N,N'-dibutylmalonamide (DMDBMA) and a functionalized IL composed of the Tf(2)N(-) anion and an imidazolium cation on which a malonamide pattern has been grafted (FIL-MA). The extraction mechanism, as demonstrated through the influence of added C(1)-C(4)-imCl or added LiTf(2)N in the aqueous phase, is slightly different between the DMDBMA and FIL-MA extracting agents. Modeling of the extraction data evidences a double extraction mechanism, with cation exchange of UO(2)(2+)versus 2 H(+) for DMDBMA or versus C(1)-C(4) -im(+) and H(+) for FIL-MA at low acidic values, and through anion exchange of [UO(2)(NO(3))(3)](-)versus Tf(2)N(-) for both ligands at high HNO(3) concentrations. The FIL-MA molecule is more efficient than its classical DMDBMA parent.  相似文献   

4.
This paper presents results from a series of pulsed field gradient (PFG) NMR studies on lipophilic guanosine nucleosides that undergo cation-templated assembly in organic solvents. The use of PFG-NMR to measure diffusion coefficients for the different aggregates allowed us to observe the influences of cation, solvent and anion on the self-assembly process. Three case studies are presented. In the first study, diffusion NMR confirmed formation of a hexadecameric G-quadruplex [G 1](16)4 K(+)4 pic(-) in CD(3)CN. Furthermore, hexadecamer formation from 5'-TBDMS-2',3'-isopropylidene G 1 and K(+) picrate was shown to be a cooperative process in CD(3)CN. In the second study, diffusion NMR studies on 5'-(3,5-bis(methoxy)benzoyl)-2',3'-isopropylidene G 4 showed that hierarchical self-association of G(8)-octamers is controlled by the K(+) cation. Evidence for formation of both discrete G(8)-octamers and G(16)-hexadecamers in CD(2)Cl(2) was obtained. The position of this octamer-hexadecamer equilibrium was shown to depend on the K(+) concentration. In the third case, diffusion NMR was used to determine the size of a guanosine self-assembly where NMR signal integration was ambiguous. Thus, both diffusion NMR and ESI-MS show that 5'-O-acetyl-2',3'-O-isopropylidene G 7 and Na(+) picrate form a doubly charged octamer [G 7](8)2 Na(+)2 pic(-) 9 in CD(2)Cl(2). The anion's role in stabilizing this particular complex is discussed. In all three cases the information gained from the diffusion NMR technique enabled us to better understand the self-assembly processes, especially regarding the roles of cation, anion and solvent.  相似文献   

5.
In the presence of Na(+) ions, two N(2)-modified guanosine derivatives, N(2)-(4-n-butylphenyl)-2',3',5'-O-triacetylguanosine (G1) and N(2)-(4-pyrenylphenyl)-2',3',5'-O-triacetylguanosine (G2), are found to self-associate into discrete octamers that contain two G-quartets and a central ion. In each octamer, all eight guanosine molecules are in a syn conformation and the two G-quartets are stacked in a tail-to-tail fashion. On the basis of NMR spectroscopic evidence, we hypothesize that the pi-pi-stacking interaction between the N(2)-side arms (phenyl in G1 and pyrenyl in G2) can considerably stabilize the octamer structure. For G1, we have used NMR spectroscopic saturation-transfer experiments to monitor the kinetic ligand exchange process between monomers and octamers in CD(3)CN. The results show that the activation energy (E(a)) of the ligand exchange process is 31 +/-5 kJ mol(-1). An Eyring analysis of the saturation transfer data yields the enthalpy and entropy of activation for the transition state: DeltaH(not =)=29 +/-5 kJ mol(-1) and DeltaS(not =)=-151 +/-10 J mol(-1) K(-1). These results are consistent with an associative mechanism for ligand exchange.  相似文献   

6.
The geometric structures, the interaction energies, the vibrational characteristics, and the electronic structures of the complexes of the isoguanine (isoG) quintet coordinated with mono valent cations (Na(+), K(+), Rb(+), and Cs(+)) have been studied based on the nonplanar models. The geometry of the local minimum structure of the Na(+)-isoG quintet complex deviates significantly from the planar structure. The geometric characteristics of the Na(+)-isoG quintet complex support the experimental findings that Na(+) is unlikely to induce the formation of the isoG quintet-based pentaplexes. Similar to the guanine tetraplexes, the ionic selectivity of the isoG quintet-based pentaplexes is largely dominated by the hydration energy of the cations. After hydration correction, the positive value of the free energy difference for the formation of the Na(+)-isoG quintet complex (DeltaG(f)) suggests that the isoG quintet is unable to capture the hydrated Na(+). The negative values of DeltaG(f) for the K(+) and Rb(+) complexes implies that both ions have the tendency to be inserted into the isoG pentaplexes. This study suggests that, to elucidate the high Cs(+) selectivity of isoG pentaplexes, it is necessary to extend the model from the isoG quintet to the isoG decamer.  相似文献   

7.
The syntheses, single crystal X-ray structures, and magnetic properties of the homometallic μ?-oxo trinuclear clusters [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](ClO?) (1) and [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)?](NO?) (2) are reported (Ad = adamantane). The persistence of the trinuclear structure within 1 and 2 in CD?Cl? and C?D?Cl? solutions in the temperature range 190-390 K is demonstrated by 1H NMR. An equilibrium between the mixed pyridine clusters [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)(3-x)(4-Phpy)(x)](NO?) (x = 0, 1, 2, 3) with a close to statistical distribution of these species is observed in CD?Cl? solutions. Variable-temperature NMR line-broadening made it possible to quantify the coordinated/free 4-Rpy exchanges at the iron centers of 1 and 2: k(ex)2?? = 6.5 ± 1.3 × 10?1 s?1, ΔH(?) = 89.47 ± 2 kJ mol?1, and ΔS(?) = +51.8 ± 6 J K?1 mol?1 for 1 and k(ex)2?? = 3.4 ± 0.5 × 10?1 s?1, ΔH(?) = 91.13 ± 2 kJ mol?1, and ΔS(?) = +51.9 ± 5 J K?1 mol?1 for 2. A limiting D mechanism is assigned for these ligand exchange reactions on the basis of first-order rate laws and positive and large entropies of activation. The exchange rates are 4 orders of magnitude slower than those observed for the ligand exchange on the reduced heterovalent cluster [Fe(III)?Fe(II)(μ?-O)(μ-O?CCH?)?(4-Phpy)?] (3). In 3, the intramolecular Fe(III)/Fe(II) electron exchange is too fast to be observed. At low temperatures, the 1/3 intermolecular second-order electron self-exchange reaction is faster than the 4-Phpy ligand exchange reactions on these two clusters, suggesting an outer-sphere mechanism: k?2?? = 72.4 ± 1.0 × 103 M?1 s?1, ΔH(?) = 18.18 ± 0.3 kJ mol?1, and ΔS(?) = -90.88 ± 1.0 J K?1 mol?1. The [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](+/0) electron self-exchange reaction is compared with the more than 3 orders of magnitude faster [Ru?(μ?-O)(μ-O?CCH?)?(py)?](+/0) self-exchange reaction (ΔΔG(exptl)(?298) = 18.2 kJ mol?1). The theoretical estimated self-exchange rate constants for both processes compare reasonably well with the experimental values. The equilibrium constant for the formation of the precursor to the electron-transfer and the free energy of activation contribution for the solvent reorganization to reach the electron transfer step are taken to be the same for both redox couples. The larger ΔG(exptl)(?298) for the 1/3 iron self-exchange is attributed to the larger (11.1 kJ mol?1) inner-sphere reorganization energy of the 1 and 3 iron clusters in addition to a supplementary energy (6.1 kJ mol?1) which arises as a result of the fact that each encounter is not electron-transfer spin-allowed for the iron redox couple.  相似文献   

8.
The self-assembled guanosine (G 1)-based hexadecamers and isoguanosine (isoG 2)-based decamers are excellent 226Ra2+ selective ionophores even in the presence of excess alkali (Na+, K+, Rb+, and Cs+) and alkaline earth (Mg2+, Ca2+, Sr2+, and Ba2+) cations over the pH range 3-11. G 1 requires additional picrate anions to provide a neutral assembly, whereas the isoG 2 assembly extracts 226Ra2+ cations without any such additives. Both G 1-picrate and isoG 2 assemblies show 226Ra2+ extraction even at a 0.35 x 10(6) fold excess of Na+, K+, Rb+, Cs+, Mg2+, or Ca2+ (10(-2) M) to 226Ra2+ (2.9 x 10(-8) M) and at a 100-fold salt to ionophore excess. In the case of the G 1-picrate assembly, more competition was observed from Sr2+ and Ba2+, as extraction of 226Ra2+ ceased at an M2+/226Ra2+ ratio of 10(6) and 10(4), respectively. With the isoG 2 assembly, 226Ra2+ extraction also occurred at a Sr2+/226Ra2+ ratio of 10(6) but ceased at a 10(6) excess of Ba2+. The results clearly demonstrate the power of molecular self-assembly for the construction of highly selective ionophores.  相似文献   

9.
Ion pair receptor 3 bearing an anion binding site and multiple cation binding sites has been synthesized and shown to function in a novel binding-release cycle that does not necessarily require displacement to effect release. The receptor forms stable complexes with the test cesium salts, CsCl and CsNO(3), in solution (10% methanol-d(4) in chloroform-d) as inferred from (1)H NMR spectroscopic analyses. The addition of KClO(4) to these cesium salt complexes leads to a novel type of cation metathesis in which the "exchanged" cations occupy different binding sites. Specifically, K(+) becomes bound at the expense of the Cs(+) cation initially present in the complex. Under liquid-liquid conditions, receptor 3 is able to extract CsNO(3) and CsCl from an aqueous D(2)O layer into nitrobenzene-d(5) as inferred from (1)H NMR spectroscopic analyses and radiotracer measurements. The Cs(+) cation of the CsNO(3) extracted into the nitrobenzene phase by receptor 3 may be released into the aqueous phase by contacting the loaded nitrobenzene phase with an aqueous KClO(4) solution. Additional exposure of the nitrobenzene layer to chloroform and water gives 3 in its uncomplexed, ion-free form. This allows receptor 3 to be recovered for subsequent use. Support for the underlying complexation chemistry came from single-crystal X-ray diffraction analyses and gas-phase energy-minimization studies.  相似文献   

10.
The water exchange process on fac-[(CO)3Mn(H2O)3]+ and fac-[(CO)3Tc(H2O)3]+ was kinetically investigated by 17O NMR as a function of the acidity, temperature, and pressure. Up to pH 6.3 and 4.4, respectively, the exchange rate is not affected by the acidity, thus demonstrating that the contribution of the monohydroxo species fac-[(CO)3M(OH)(H2O)2] is not significant, which correlates well with a higher pKa for these complexes compared to the homologue fac-[(CO)3Re(H2O)3]+ complex. The water exchange rate K298ex/s(-1) (DeltaHex double dagger/kJ mol(-1); DeltaSex double dagger/J mol(-1) K(-1); DeltaV double dagger/cm3 mol-1) decreases down group 7 from Mn to Tc and Re: 23 (72.5; +24.4; +7.1) > 0.49 (78.3; +11.7; +3.8) > 5.4 x 10(-3) (90.3; +14.5; -). For the Mn complex only, an O exchange on the carbonyl ligand could be measured (K338co = 4.3 x 10(-6) s(-1)), which is several orders of magnitude slower than the water exchange. In the case of the Tc complex, the coupling between 17O (I = 5/2) and 99Tc (I = 9/2) nuclear spins has been observed (1J99Tc,17O = 80 +/- 5 Hz). The substitution of water in fac-[(CO)3M(H2O)3]+ by dimethyl sulfide (DMS) is slightly faster than that by CH3CN: 3 times faster for Mn, 1.5 times faster for Tc, and 1.2 times faster for Re. The pressure dependence behavior is different for Mn and Re. For Mn, the change in volume to reach the transition state is always clearly positive (water exchange, CH3CN, DMS), indicating an Id mechanism. In the case of Re, an Id/Ia changeover is assigned on the basis of reaction profiles with a strong volume maximum for pyrazine and a minimum for DMS as the entering ligand.  相似文献   

11.
The exchange of Cs(+) into H(1.22)K(0.84)ZrSi(3)O(9)·2.16H(2)O (umbite-(HK)) was followed in situ using time-resolved X-ray diffraction at the National Synchrotron Light Source. The umbite framework (space group P2(1)/c with cell dimensions of a = 7.2814(3) ?, b = 10.4201(4) ?, c = 13.4529(7) ?, and β = 90.53(1)°) consists of wollastonite-like silicate chains linked by isolated zirconia octahedra. Within umbite-(HK) there are two unique ion exchange sites in the tunnels running parallel to the a-axis. Exchange Site 1 is marked by 8 member-ring (MR) windows in the bc-plane and contains K(+) cations. Exchange Site 2 is marked by a larger 8-MR channel parallel to [100], and contains H(2)O molecules. The occupancy of the Cs(+) cations through these channels was modeled by Rietveld structure refinements of the diffraction data and demonstrated that there is a two-step exchange process. The incoming Cs(+) ions populated the larger 8-MR channel (Exchange Site 2) first and then migrated into the smaller 8-MR channel. During the exchange process a structural change occurs, transforming the exchanger from monoclinic P2(1)/c to orthorhombic P2(1)2(1)2(1). This structural change occurs when Cs(+) occupancy in the small cavity becomes greater than 0.50. The final in situ ion exchange diffraction pattern was refined to yield umbite-(CsK) with the molecular formula H(0.18)K(0.45)Cs(1.37)ZrSi(3)O(9)·0.98H(2)O and possessing an orthorhombic unit cell with dimensions a = 10.6668(8) ?, b = 13.5821(11) ?, c = 7.3946(6) ?. Solid state (133)Cs MAS NMR showed there is only a slight difference between the two cavities electronically. Valence bond sums for the completely occupied Exchange Site 1 demonstrate that Cs-O bonds of up to 3.8 ? contribute to the coordination of the Cs(+) cation.  相似文献   

12.
We are interested in identifying mononuclear cationic [M(V)=O]3+ (M = Tc, Re) complexes for radiopharmaceutical applications. The open-chain ligand, 1,4,8,11-tetraazaundecane-5,7-dione-(dioxo-tetH6) with two amine and two amide donors, was selected for investigation since the literature led us to expect that a five-coordinate [Re(V)=O(dioxo-tetH4)]+ cation would dominate. Instead, the neutral mu-oxo bridged dinuclear complex, Re2O3(dioxo-tetH4)2 (1), and a salt of the six-coordinate mononuclear cation, [ReO(H2O)(dioxo-tetH4)]+ (2), were isolated; the structure of each was determined by X-ray crystallography. The cation (2) is unusual because it has a trans-oxo/aqua core. Such aqua compounds are rarely isolated, and the Re-OH2 distance is relatively short (2.185 A). The cation has two pKa values, 4.1 and 8.7, determined with visible spectroscopy. Since the Re-OH2 bond is short, the coordinated water is likely to be acidic. Thus the two pKa's are assigned to the stepwise deprotonation of the water ligand to give a trans-oxo/hydroxo neutral form and a trans-dioxo anion. Although 1 was the first product isolated following ligand exchange of ReOCl3(Me2S)(OPPh3) with dioxo-tetH6 under neutral conditions, it probably formed from the hydroxo mononuclear complex. Under concentrated conditions (approximately 300 mM) the dinuclear complex deposited from solution, but the 1H NMR spectra of 2 (approximately 20 mM) were consistent with the presence of only monomeric forms in D2O, pH 3-12. 1H NMR experiments demonstrated that in DMSO-d6 2 converts to 1 upon addition of base, consistent with the proposal that two units of the hydroxo monomer condense to give the dinuclear form. In addition, all spectra of pure 1 dissolved in DMSO-d6 included extra low intensity signals that were characteristic of the monomer. Thus, although 1 is favored over the neutral monomer in DMSO-d6, the two complexes exist as a mixture of equilibrating forms. Our results do not support the previous findings for the Re(V) complex with a macrocyclic diamine-diamide ligand related to dioxo-tetH6. The data indicate that the ability of an amido group to donate electron density to a Re(V) center is moderately greater than the donating ability of a neutral amine group.  相似文献   

13.
The [Mo(3)S(4)Cl(3)(dhprpe)(3)](+) (1(+)) cluster cation has been prepared by reaction between Mo(3)S(4)Cl(4)(PPh(3))(3) (solvent)(2) and the water-soluble 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe, L) ligand. The crystal structure of [1](2)[Mo(6)Cl(14)] has been determined by X-ray diffraction methods and shows the typical incomplete cuboidal structure with a capping and three bridging sulfides. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of the diphosphine ligand. Depending on the pH, the hydroxo group of the functionalized diphosphine can substitute the chloride ligands and coordinate to the cluster core to give new clusters with tridentate deprotonated dhprpe ligands of formula [Mo(3)S(4)(dhprpe-H)(3)](+) (2(+)). A detailed study based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of acid-base equilibria and the kinetics of interconversion between the 1(+) and the 2(+) forms. Both conversion of 1(+) to 2(+) and its reverse process occur in a single kinetic step, so that reactions proceed at the three metal centers with statistically controlled kinetics. The values of the rate constants under different conditions are used to discuss on the mechanisms of opening and closing of the chelate rings with coordination or dissociation of chloride.  相似文献   

14.
The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).  相似文献   

15.
The new ligand HPDO3MA [(R,R,R,R)-10-(2-hydroxypropyl)-α,α′,α′′-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid] was designed to combine and optimize the chemical properties of the macrocyclic ligands HPDO3A and DOTMA. The presence of the methyl groups on the acetic pendant arms of HPDO3A is expected to rigidify the structure of the ligand and favor an increase of the kinetic inertness of the Ln complexes. 1H NMR spectra of Eu(HPDO3MA) displayed the presence of two pairs of diastereoisomers: SAP (square antiprismatic) and TSAP (twisted square antiprismatic) isomers (56 and 44 %, respectively). In addition, 1H and 17O relaxometric NMR studies of Gd(HPDO3MA) showed approximately a 10 % increase in relaxivity and a faster water exchange rate with respect to Gd(HPDO3A). Moreover, a detailed chemical exchange saturation transfer (CEST) characterization of Yb(HPDO3MA) displayed a sensitivity about two times larger than that of Yb(HPDO3A) both in phantom and in cell labeling experiments. Finally, the kinetic inertness of Yb(HPDO3MA) was measured to be twice as high as that of Yb(HPDO3A), with a dissociation half-life at physiological pH of about 2500 years.  相似文献   

16.
A combination of high-resolution electrospray mass spectrometry and (1)H NMR spectroscopy has been used to prove that when a mixture of [(salen)TiO]2 complexes containing two different salen ligands (salen and salen') is formed, an equilibrium is established between the homodimers and the heterodimer [(salen)TiO2Ti(salen')]. Depending upon the structure and stereochemistry of the two salen ligands, the equilibrium may favor either the homodimers or the heterodimer. Extension of this process to mixtures of titanium(salen) complexes [(salen)TiO]2 and vanadium (V)(salen') complexes [(salen')VO] (+)Cl (-) allowed the in situ formation of the heterobimetallic complex [(salen)TiO2V(salen')] (+)X (-) to be confirmed for all combinations of salen ligands studied except when the salen ligand attached to titanium contained highly electron-withdrawing nitro-groups. The rate of equilibration between heterobimetallic complexes is faster than that between two titanium complexes as determined by line broadening in the (1)H NMR spectra. These structural results explain the strong rate-inhibiting effect of vanadium (V)(salen) complexes in asymmetric cyanohydrin synthesis catalyzed by [(salen)TiO]2 complexes. It has also been demonstrated for the first time that the titanium and vanadium complexes can undergo exchange of salen ligands and that this is catalyzed by protic solvents. However, the ligand exchange is relatively slow (occurring on a time scale of days at room temperature) and so does not complicate studies aimed at using heterobimetallic titanium and vanadium salen complexes as asymmetric catalysts. Attempts to obtain a crystal structure of a heterobimetallic salen complex led instead to the isolation of a trinuclear titanium(salen) complex, the formation of which is also consistent with the catalytic results obtained previously.  相似文献   

17.
Systematic investigations were performed with various substituted groups at C8 purine and ribose. A series of isoG analogs, C8-phenyl substituted isoG were synthesized and applied for Cs+ coordination. The structural proximity between purine and ribose limited pentaplex formation for C8-phenyl substituted isoG derivatives. Based on this observation, deoxy isoG derivative with modification on ribose (tert-butyldimethylsilyl ether) was applied to assemble with the Cs+ cation. Critical solvent (CDCl3 and CD3CN) and anion (BPh4, BARF, and PF6) effects were revealed, leading to the controllable formation of various stable isoG pentaplexes, including singly charged decamer, doubly charged decamer, and 15-mer, etc. Finally, the X-ray crystal structure of [isoG20Cs3]3+(BARF)3 was successfully obtained, which is the first example of multiple-layer deoxy isoG binding with the Cs+ cation, providing solid evidence of this new isoG ionophore beyond two-layer sandwich self-assembly.

The first example of multiple-layer deoxy isoG self-assembly was characterized by X-ray crystal structure. Critical solvent and anion effects were revealed, leading to the controllable formation of various stable isoG assemblies.  相似文献   

18.
The synthesis of racemic and optically pure ligand L, in which two 6,6'-disubstituted bipyridines are connected by methyleneoxy linkers to the molecular cleft dibenzobicyclo[b,f][3.3.1]nona-5a,6a-diene-6,12-dione, is reported. In the presence of 2 equivalents of zinc(ii) trifluoromethansulfonate (+/-)- undergoes slow reversible coordination over 24 h to form a pair of enantiomeric [2 + 2] metallomacrocycles, [Zn2(+)L2](OTf)(4) and [Zn2(-)L2](OTf)(4) respectively, that contain either two (+)-L ligands or two (-)-L ligands. This assignment was confirmed by independent studies with either (+)-L or (-)-L which formed the same complexes but at a significantly faster rate (3 h), and circular dichroism spectra of [Zn2(+)L2](OTf)(4) and [Zn2(-)L2](OTf)(4) which gave signals of the same intensity with the opposite sign. Treatment of (+/-)-L or optically pure L with copper(I) showed rapid formation of a mixture of oligomers as well as the [2 + 2] metallomacrocycle. The complex Zn2L2(OTf)(4) exhibits slow exchange between two species on the NMR time scale at room temperature. The results are consistent with the formation of a library of metal complexes in which the zinc(ii) binds initially to the most accessible bipyridyl binding sites in (+/-)-. Equilibration over several hours results in self-recognition of enantiomeric ligands to form a pair of enantiomeric metallomacrocycles, which have been tentatively assigned as having the helical configuration. Slow exchange is attributed to the preference for both metal centres to adopt 6-coordinate geometries involving the linker oxygens, but are limited to exchanging 5-coordinate complexes due to the shape of the cleft and the short linker.  相似文献   

19.
This article describes a (39)K nuclear magnetic resonance (NMR) spectroscopic study of K (+) displacement at the muscovite/water interface as a function of aqueous phase pH. (39)K NMR spectra and T 2 relaxation data for nanocrystalline muscovite wet with a solid/solution weight ratio of 1 at pH 1, 3, and 5.5 show substantial liquid-like K (+) only at pH 1. At pH 3 and 5.5, all K (+) appears to be associated with muscovite as inner- or outer-sphere complexes, indicating that H 3O (+) does not displace basal surface K (+) beyond the (39)K detection limit under these conditions. In our pH 1 mixture, only approximately 1/3 of the initial basal surface K (+) population is located more than 3-4 A from the surface. (29)Si and (27)Al MAS NMR spectra and SEM images show no evidence of dissolution during the (39)K experiments, consistent with the liquid-like (39)K fraction originating from displaced basal surface K (+). Assuming no muscovite dissolution or interlayer exchange, the K (+)/H 3O (+) ratio relevant to the solution/surface exchange equilibrium is controlled by the total amount of K (+) on the surface and H 3O (+) in solution (K (+) surf/H 3O (+) aq). These parameters, in turn, depend on the basal surface area, solution pH, and the solid/solution ratio. The results here are consistent with significant displacement of surface K (+) only under conditions where the initial K (+) surf/H 3O (+) aq ratio is less than approximately 1. Computational molecular models of the muscovite/water interface should account for both K (+) and H 3O (+) in the near-surface region.  相似文献   

20.
In strongly alkaline aqueous KOH solutions containing SiIV in large excess over AlIII, the kinetics of exchange of monomeric silicate with small acyclic aluminosilicate solute species is much more rapid than with either cyclic aluminosilicates or any all-silicate anions. Selective inversion recovery 29Si NMR studies of homogeneous solutions of stoichiometric composition 3.0 mol kg-1 of SiO2, 0.1 mol kg-1 of Al2O3, and 8.0 mol kg-1 of K2O in 60-75% D2O gave rate constants of 2.0 +/- 0.2 kg mol-1 s-1 and 17 +/- 4 s-1 for the forward and reverse reactions of monomeric silicate with (HO)3AlOSiOn(OH)(3-n)(n+1)- (n = 2 or 3) at 0 degree C. These rate constants are more than 10(4)-fold faster than those extrapolated from 60 to 90 degrees C for comparable reactions of silicate anions. The greater lability of acyclic aluminate centers relative to silicate is ascribed partly to the availability of HO- groups for condensation reactions on Al and mainly to the ease of expansion of the coordination number of AlIII beyond 4. The latter attribute is diminished when AlIII is constrained to be tetrahedral in cyclic structures. With respect to the mechanism of formation of zeolites from alkaline aqueous media, it is suggested that small, labile AlOSi units add rapidly to growing zeolitic structures "on demand", whereas the more kinetically inert cage or ring structures cannot. This would explain why a silicate or aluminosilicate structure that is dominant among solute species at equilibrium in the presence of a particular cation may bear little or no geometric relation to the zeolitic framework promoted kinetically by that same cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号