首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogenation behavior of the polar intermetallic systems AeE2 (Ae = Ca, Sr, Ba; E = Al, Ga, In) has been investigated systematically and afforded the new hydrides SrGa2H2 and BaGa2H2. The structure of these hydrides was characterized by X-ray powder diffraction and neutron diffraction of the corresponding deuterides. Both compounds are isostructural to previously discovered SrAl2H2 (space group P3m1, Z = 1, SrGa2H2/D2: a = 4.4010(4)/4.3932(8) A, c = 4.7109(4)/4.699(1) A; BaGa2H2/D2: a = 4.5334(6)/4.5286(5) A, c = 4.9069(9)/4.8991(9) A). The three hydrides SrAl2H2, SrGa2H2, and BaGa2H2 decompose at around 300 degrees C at atmospheric pressure. First-principles electronic structure calculations reveal that H is unambiguously part of a two-dimensional polyanion [E2H2]2- in which each E atom is tetrahedrally coordinated by three additional E atoms and H. The compounds AeE2H2 are classified as polyanionic hydrides. The peculiar feature of polyanionic hydrides is the incorporation of H in a polymeric anion where it acts as a terminating ligand. Polyanionic hydrides provide unprecedented arrangements with both E-E and E-H bonds. The hydrogenation of AeE2 to AeE2H2 takes place at low reaction temperatures (around 200 degrees C), which suggests that the polyanion of the polar intermetallics ([E2]2-) is employed as precursor.  相似文献   

2.
The boron and aluminium dimers [Me2E(micro-py)]2 [E=B (1); Al (2)] are formed as mixtures of two isomers in which the group 13 centres are coordinated by the bridging 2-py ligands in a cis or trans manner, however, in contrast to previous studies, we find that simply heating the mixtures of these isomers of and gives the more thermodynamically stable (synthetically useful) trans isomers exclusively (the trans isomer being the only product in the case of the gallium analogue ).  相似文献   

3.
The nature of chemical bonding and metalloaromaticity of Na(2)[(MArx')(3)] (M = B, Al, Ga) have been studied within the framework of the atoms in molecules (AIM) theory and using electron localization function (ELF) analysis. The π electrons of the studied systems were separated from the total electron density and analyzed. The calculated results indicate that there are closed-shell weak interactions between the sodium atom and the M(3) (M = B, Al, Ga) ring, between the sodium atom and the terminal phenyl group on each Arx', and between the terminal phenyl groups on Arx' in Na(2)[(MArx')(3)]. The Na(2)[(MArx')(3)] has metalloaromatic nature, and the sodium atoms have an active role in determining the computed aromatic properties of the three-numbered cycle.  相似文献   

4.
Complexes formed by interaction of E(C6F5)3 (E = B, Al, Ga, In) with excess of acetonitrile (AN) were structurally characterized. Quantum chemical computations indicate that for Al(C6F5)3 and In(C6F5)3 the formation of a complex of 1:2 composition is more advantageous than for B(C6F5)3 and Ga(C6F5)3, in line with experimental observations. Formation of the solvate [Al(C6F5)3 · 2AN] · AN is in agreement with predicted thermodynamic instability of [Al(C6F5)3 · 3AN]. Tensimetry study of B(C6F5)3 · CH3CN reveals its stability in the solid state up to 197 °C. With the temperature increase, the complex undergoes irreversible thermal decomposition with pentafluorobenzene formation.  相似文献   

5.
Reaction mechanisms between MH (M=B, Al) and the H2S molecule have been theoretically studied. The G3 ab initio and DFT calculations demonstrate that only one stable addition complex (HM:SH2, M=B, Al) can be formed, and that, starting from the addition complex (HM:SH2) two parallel reaction channels have been found: one is an addition reaction to give H2MSH via the three‐membered ring transition state (TS), and the other is a dehydrogenation reaction to give MSH+H2 via the four‐membered ring TS. Thermodynamics and Eyring transition state theory (TST) with the Wigner correction are also used to compute the thermodynamic functions, the equilibrium constants, A factors, and the rate constants of these reaction channels at 300–1500 K. The calculated results predict that the product H2BSH in the system of BH+H2S and the product AlSH+H2 in the system of AlH+H2S will be mainly observed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

6.
(RXNR)_4(X=B,Al,Ga)簇合物的结构与化学键性质   总被引:5,自引:0,他引:5  
用自洽场理论(HF)和密度泛函理论(DFT)的B3LYP方法,在6-311G~*水平上 ,首次从理论上研究了(RXNR)_4 (R = B,Al,Ga;R = H,CH_3,NH_2,OH)簇合 物及其先驱化合物(RXNR)_2的几何构型、电子结构和化学键性质,并与其异构体 及其等电子化合物进行了比较。结果表明,(RBNR)_4为环状骨架结构,(RAlNR)_4 和(RGaNR)_4为建立骨架结构。  相似文献   

7.
Terminal ‘N3—’ ligands in rhenium and technetium nitrido complexes are sufficiently nucleophilic to react with Lewis acids under formation of nitrido‐bridged compounds. The reactivity of the nucleophilic centre and the nature of the formed compounds are strongly dependent on the Lewis acid and the composition of the metal complex used. Air‐stable compounds with Re≡N‐ER3 bridges are formed when ER3 is BR3 (R = H, Cl, Br, Ethyl, Phenyl, C6F5), BCl2Ph, GaCl3, CPh3+, or PPh3. The six‐co‐ordinate rhenium(V) complexes [ReNX2(PMe2Ph)3] (X = Cl, Br), [ReN(X)(Et2dtc)(PMe2Ph)2] (Et2dtc = diethyldithiocarbamate) and [ReN(Et2dtc)2(PMe2Ph)] have been proved to be excellent starting materials for this type of reactions, whereas the five‐co‐ordinate precursors [ReNCl2(PPh3)2], [ReN(Et2dtc)2], [ReN{Ph2P(S)NP(S)Ph2}2] or [ReNCl4] only react with the most reactive Lewis bases of the examples mentioned above such as BCl2Ph or B(C6F5)3. The rhenium‐nitrido bond lengths remain almost unchanged by the adduct formation, whereas a significant decrease of the trans‐influence of the nitrido complexes has been observed as can be seen by a shortening of the corresponding bond lengths or dimerization of five‐co‐ordinate precursors. Electrophilic attack of the Lewis acid to a donor atom of the equatorial co‐ordination sphere of the rhenium complex results in the formation of ‘underco‐ordinate’ metal centres which resemble to di‐, tri or tetrameric units with asymmetric nitrido bridges between each two rhenium atoms. EPR spectroscopy is an excellent tool to reflect the formation of nitrido bridges at the paramagnetic (d1) [ReNX4] core (X = F, Cl, Br, NCS). The spectral parameters derived for the products of reactions of [ReNCl4] with various boron compounds indicate an increase of the covalency of the equatorial Re‐L bonds as a consequence of the formation of a nitrido bridge. The tendency for the formation of nitrido bridges with Lewis acids is significantly lower for technetium compounds compared to their rhenium analogues. Only a few examples with BH3 and BPhCl2 have been established.  相似文献   

8.
In a combined experimental and computational study, the molecular and electronic structures of the divalent bis(m-terphenyl)element cations [(2,6-Mes2C6H3)2E]+ of group 13 ( 1 , E=B; 2 , E=Al; 3 , E=Ga; 4 , E=In; 5 , E=Tl) were investigated. The preparation and characterization of 2 , 3 and 5 were previously reported by Wehmschulte's (Organometallics 2004 , 23, 1965–1967; J. Am. Chem. Soc. 2003 , 125, 1470–1471) and our groups (Organometallics 2009 , 28, 6893–6901). The indinium ion 4 was prepared and fully characterized for the first time. Attempts to prepare the borinium ion 1 by fluoride or hydride abstraction were unsuccessful. The electronic structures of 1 – 5 and the stabilization by the bulky m-terphenyl substituents were analyzed using quantum chemical calculations and compared to the divalent bis(m-terphenyl)pnictogenium ions [(2,6-Mes2C6H3)2E]+ of group 15 ( 6 , E=P; 7 , E=As; 8 , E=Sb; 9 , E=Bi) previously investigated by our group (Angew. Chem. Int. Ed. 2018 , 57, 10080–10084). The calculated fluoride ion affinities (FIA) of 1–9 are higher than that of SbF5, which classifies them as Lewis superacids.  相似文献   

9.
In context of an analysis of the effect of the central atom E of gaseous radical cations of phenyl pnictogens C(6)H(5)EH(2), E = N (1), P (2), and As (3), the mass spectrometric reactions of phenyl phosphane 2 have been re-investigated by D-labeling and by using methods of tandem mass spectrometry. The 70 eV mass spectrum of 2 shows the base peak for ion [M-2H](*+) and significant peaks for ions [M-H](+), [M-(2C,3H)](+), [M-PH] (*+), and [M-(C,P,2H)](+). Metastable 2(*+) fragments exclusively by loss of H(2), and the investigation of deuterated 2-d(2) shows that excessive H/D migrations occur before fragmentation. Other significant fragment ions in the mass spectrum of 2 arise by losses of C(2)H(2,) P, or HCP from the ion [M-H](+). This mass spectrometric behavior puts the radical cation 2(*+) in between the fragmentation reactions of aniline radical cation 1(*+) (loss of H and subsequent losses of C(2)H(2,) or HCN) and phenyl arsane radical cation 3(*+) (elimination of H(2) and loss of As from ion [M-H](+)). The fragmentation mechanisms of the radical cations 1(*+) -3(*+) and of related ions were analyzed by calculations of the enthalpy of relevant species at the stationary points of the minimum enthalpy reaction pathways using the DFT hybrid functionals UBHLYP/6-311+G(2d,p)//UBHLYP/6-311+G(d). The results show that, in contrast to ionized aniline 1(*+), the reactions of the derivatives 2(*+) and 3(*+) of the heavier main group elements P and As are characterized by an easy elimination of H(2)via a reductive elimination of group C(6)H(5)-E (E = P, As) and by a special stability of bicyclic isomers of 2(*+) and 3(*+). Thus, while 1(*+) rearranges by ring expansion and formation an 7-aza-tropylium cation by loss of H., the increased stability of bicyclic intermediates in the rearrangement of 2(*+) and in particular of 3(*+) results in separate rearrangement pathways. The origin of these effects is the more extended and diffuse nature of the 3p and 4p AO of P and As.  相似文献   

10.
Structural and thermodynamic characteristics of heteroelement inorganic heterocycles M1M2E1E2H8 (M1, M2 = Al, Ga, In; E1, E2 = N, P, As) were calculated by the density functional theory B3LYP/LANL2DZ(d,p) method. It was shown that energetic characteristics of heterocycle dissociation processes can be calculated by simple a additive scheme with the use of the average M-E bond energy. Dissociation of heteroelement heterocycles into monomeric H2MEH2 molecules proceeds according to the hardsoft acid-base (HSAB) concept.  相似文献   

11.
DFT calculations have been used to probe the mechanism of the addition reaction of group 15 hydrides EH3 (E=N, P, As) and H2 to a N‐heterocyclic silylene and its germylene homologue. Nitrogen lone pair donation into the vacant p‐orbital of Si and Ge is the first step of ammonia activation, whereas silylene and germylene behave as nucleophiles toward dihydrogen, phosphane, and arsane. Formation of 1,4‐addition products is kinetically favoured in all cases. In excess ammonia, the assistance of a second molecule drastically lowers the 1,1‐addition energy barriers, enabling formation of 1,1‐addition products. The participation of a second molecule in the P? H bond activation of phosphane also lowers the 1,1‐addition energy barriers, but not enough to cause inversion.  相似文献   

12.
Two intramolecular stabilized arylaluminum dihydrides, (2-(NEt2CH2)-6-MeC6H3)AlH2 (1) and (2,6-(NEt2CH2)2C6H3)AlH2 (2), were prepared by reducing the corresponding dichlorides with an excess of LiAlH4 in diethyl ether. Reactions of 1 and 2 with elemental selenium afforded the dimeric arylaluminum selenides [(2-(NEt2CH2)-6-MeC6H3)AlSe]2 (3) and [(2,6-(NEt2CH2)2C6H3)AlSe]2 (4). Reaction of 2 with metallic tellurium gave the dimeric arylaluminum telluride [(2,6-(NEt2CH2)2C6H3)AlTe]2 (5). The possible reaction pathway is discussed, and molecular structures determined by single-crystal X-ray analyses are presented for 3 and 5.  相似文献   

13.
The reaction of laser-ablated Al atoms and normal-H(2) during co-deposition at 3.5 K produces AlH, AlH(2), and AlH(3) based on infrared spectra and the results of isotopic substitution (D(2), H(2) + D(2) mixtures, HD). Four new bands are assigned to Al(2)H(4) from annealing, photochemistry, and agreement with frequencies calculated using density functional theory. Ultraviolet photolysis markedly increases the yield of AlH(3) and seven new absorptions for Al(2)H(6) in the infrared spectrum of the solid hydrogen sample. These frequencies include terminal Al-H(2) and bridge Al-H-Al stretching and AlH(2) bending modes, which are accurately predicted by quantum chemical calculations for dibridged Al(2)H(6), a molecule isostructural with diborane. Annealing these samples to remove the H(2) matrix decreases the sharp AlH(3) and Al(2)H(6) absorptions and forms broad 1720 +/- 20 and 720 +/- 20 cm(-1) bands, which are due to solid (AlH(3))(n). Complementary experiments with thermal Al atoms and para-H(2) at 2.4 K give similar spectra and most product frequencies within 2 cm(-1). Although many volatile binary boron hydride compounds are known, binary aluminum hydride chemistry is limited to the polymeric (AlH(3))( solid. Our experimental characterization of the dibridged Al(2)H(6) molecule provides an important link between the chemistries of boron and aluminum.  相似文献   

14.
The usual assumption of the extra stability of icosahedral boranes (2) over pentagonal-bipyramidal boranes (1) is reversed by substitution of a vertex by a group 13 metal. This preference is a result of the geometrical requirements for optimum overlap between the five-membered face of the ligand and the metal fragment. Isodesmic equations calculated at the B3LYP/LANL2DZ level indicate that the extra stability of 1-M-2,4-C(2)B(4)H(7) varies from 14.44 kcal/mol (M = Al) to 15.30 kcal/mol (M = Tl). Similarly, M(2,4-C(2)B(4)H(6))(2)(1-) is more stable than M(2,4-C(2)B(9)H(11))(2)(1-) by 9.26 kcal/mol (M = Al) and by 6.75 kcal/mol (M = Tl). The preference for (MC(2)B(4)H(6))(2) over (MC(2)B(9)H(11))(2) at the same level is 30.54 kcal/mol (M = Al), 33.16 kcal/ mol (M = Ga) and 37.77 kcal/mol (M = In). The metal-metal bonding here is comparable to those in CpZn-ZnCp and H(2)M-MH(2) (M= Al, Ga, and In).  相似文献   

15.
Inspired by the pioneering experimental characterisation of the all-metal aromatic unit Al(4)2- in the bimetallic molecules MAl4- (M=Li, Na, Cu) and by the very recent theoretical design of sandwich-type transition-metal complexes [Al4MAl4]q- (q=0-2; M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W), we used density functional theory (DFT) calculations (B3LYP/6-311+G(d) to design a series of novel non-transition-metal sandwich complexes based on the all-metal aromatic unit Al4(2-) and the main-group metals M (M=Li, Na, K, Be, Mg, Ca). The traditional homo-decked sandwich compounds [Al4MAl4]q- (without counterions) and (nM)q+[Al4MAl4]q- (with counterions M) (q=2-3, M=Li, Na, K, Be, Mg, Ca), although some of them are truly energy minima, have a much higher energy than many fused isomers. We thus concluded that it seems unlikely for Al4(2-) to sandwich the main-group metal atoms in the homo-decked sandwich form. Alternatively, we proposed a new type of sandwich complex, namely hetero-decked sandwich compounds [CpMAl4]q-, that are the ground-state structures for each M both with and without counterions. It was shown that with the rigid Cp- partner, the all-metal aromatic unit Al(4)2- might indeed act as a "superatom". These new types of all-metal aromatic unit-based sandwich complexes await future experimental verification.  相似文献   

16.
Lee TB  McKee ML 《Inorganic chemistry》2012,51(7):4205-4214
The reduction potentials (E°(Red) versus SHE) of hypercloso boron hydrides B(n)H(n) (n = 6-13) and B(12)X(12) (X = F, Cl, OH, and CH(3)) in water have been computed using the Conductor-like Polarizable Continuum Model (CPCM) and the Solvation Model Density (SMD) method for solvation modeling. The B3LYP/aug-cc-pvtz and M06-2X/aug-cc-pvtz as well as G4 level of theory were applied to determine the free energies of the first and second electron attachment (ΔG(E.A.)) to boron clusters. The solvation free energies (ΔG(solv)) greatly depend on the choice of the cavity set (UAKS, Pauling, or SMD) while the dependence on the choice of exchange/correlation functional is modest. The SMD cavity set gives the largest ΔΔG(solv) for B(n)H(n)(0/-) and B(n)H(n)(-/2-) while the UAKS cavity set gives the smallest ΔΔG(solv) value. The E°(Red) of B(n)H(n)(-/2-) (n = 6-12) with the G4/M06-2X(Pauling) (energy/solvation(cavity)) combination agrees within 0.2 V of experimental values. The experimental oxidative stability (E(1/2)) of B(n)X(n)(2-) (X = F, Cl, OH, and CH(3)) is usually located between the values predicted using the B3LYP and M06-2X functionals. The disproportionation free energies (ΔG(dpro)) of 2B(n)H(n)(-) → B(n)H(n) + B(n)H(n)(2-) reveal that the stabilities of B(n)H(n)(-) (n = 6-13) to disproportionation decrease in the order B(8)H(8)(-) > B(9)H(9)(-) > B(11)H(11)(-) > B(10)H(10)(-). The spin densities in B(12)X(12)(-) (X = F, Cl, OH, and CH(3)) tend to delocalize on the boron atoms rather than on the exterior functional groups. The partitioning of ΔG(solv)(B(n)H(n)(2-)) over spheres allows a rationalization of the nonlinear correlation between ΔG(E.A.) and E°(Red) for B(6)H(6)(-/2-), B(11)H(11)(-/2-), and B(13)H(13)(-/2-).  相似文献   

17.
18.
用IR和ITPD技术研究了H(Al)ZSM-5、H(Ga)ZSM-5和H(Fe)ZSM-5杂原子分子筛的表面酸性。结果表明,这些分子筛表面既存在B酸中心,也存在L酸中心,但是就两种酸的表面浓度比值CL/CB而言,H(Ga)ZSM-5和H(Fe)ZSM-5要比H(Al)ZSM-5高得多。在十五烷裂解时,L酸中心起的作用可能更大。  相似文献   

19.
采用密度泛函理论(DFT)的B3LYP方法, 在6-31G**和Lanl2dz水平上分别对(MN)nHm(M=Ga, In; n=1-4; m=1, 2)进行了优化和振动频率计算. 得到了上述团簇的最稳定构型、H原子的结合能以及它们的能隙. 结果表明, (MN)nH(M=Ga, In; n=1-4)的基态构型均为双重态, (MN)nH2(M=Ga, In; n=1-4)的基态构型均为单重态; 当氢的个数为1时, 加在N原子上比加在M(M=Ga, In)原子上稳定, 如有N3单元, 那么加在N3单元两侧的构型是相同的, 且它是最稳定的; 当氢的个数为2时, 除n=1外, 分别加在两个N原子上的构型是最稳定的, 如有N3单元, 那么分别加在N3单元分离最远的两个N原子的构型是最稳定的. GaNH、(GaN)3H 和InNH的结合能和能隙都很大, 说明这些团簇都有很高的稳定性.  相似文献   

20.
The photoelectron images of Ag(-)(H(2)O)(x) (x=1,2) and AgOH(-)(H(2)O)(y) (y=0-4) are reported. The Ag(-)(H(2)O)(1,2) anionic complexes have similar characteristics to the other two coinage metal-water complexes that can be characterized as metal atomic anion solvated by water molecules with the electron mainly localized on the metal. The vibrationally well-resolved photoelectron spectrum allows the adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of AgOH(-) to be determined as 1.18(2) and 1.24(2) eV, respectively. The AgOH(-) anion interacts more strongly with water molecules than the Ag(-) anion. The photoelectron spectra of Ag(-)(H(2)O)(x) and AgOH(-)(H(2)O)(y) show a gradual increase in ADE and VDE with increasing x and y due to the solvent stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号