首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Isotope depletion (or enrichment) of large biomolecules is a procedure already used in high resolution Fourier transform ion cyclotron resonance mass spectrometry for improving the reliability and accuracy of biomolecular mass characterization. In this work, effects of isotope depletion on a number of mass spectrometric parameters are systematically studied. Implementation of the isotope depletion techniques in conjunction with lower resolution mass analyzers is discussed as well. We investigate theoretically the position of the centroid of the isotopic mass distributions (centroid mass) and the shift between the monoisotopic and the centroid masses of biopolymers as a function of the isotope abundance (e.g., 12C:13C ratio). The behaviour of other additive mass parameters, like the ratio between the monoisotopic and the first isotopic peak, is also discussed. We address by computer simulations the effects of different instrumental parameters like mass resolution and ion statistics as a function of isotope abundances and from there the achievable mass accuracy for high-mass biopolymers. We assess some of the practical issues of the isotope depletion technique, viz., to what degree and with what accuracy the depletion procedure should be performed for achieving the desired mass accuracy.  相似文献   

2.
41Ca ultratrace determination by diode-laser-based resonance ionization mass spectrometry with extremely high isotopic selectivity is presented. Application to environmental dosimetry of nuclear reactor components, to cosmochemical investigations of production cross sections, and biomedical isotope-tracer studies of human calcium kinetics are discussed. Future investigations are possible use in 41Ca-radiodating. Depending on the application, 41Ca isotopic abundances in the range of 10(-9) to 10(-15) relative to the dominant stable isotope 40Ca must be determined. Either double- or triple-resonance optical excitation with narrow-band extended cavity diode lasers and subsequent non-resonant photoionization of calcium in a collimated atomic beam were used. The resulting photoions are detected with a quadrupole mass spectrometer optimized for background reduction and neighboring mass suppression. Applying the full triple-resonance scheme provides a selectivity of approximately 5 x 10(12) in the suppression of neighboring isotopes and > 10(8) for isobars, together with an overall detection efficiency of approximately 5 x 10(-5). Measurements on a variety of sample types are discussed; the accuracy and reproducibility of the resulting 41Ca/40Ca isotope ratios was better than 5%.  相似文献   

3.
Scans of the electrostatic analyzer (ESA) across the precursor ion beam in reverse-geometry (BE) mass spectrometers that are operated under double-focusing conditions do not measure the “energy resolution of the main beam”: They only measure double-focusing resolution. The only way that ESA scans can measure the kinetic energy distribution of the main beam is to operate the instrument so that angular (directional) focusing is not achieved. Thus, the mass spectrometer is no longer double-focusing. Under double-focusing conditions, however, scans of the accelerating voltage while the magnetic field and ESA are held constant can be used to measure either the kinetic energy distribution of the main beam that enters the magnet or the energy-resolving power of the instrument. Scans at a constant ratio of B2/E can be used similarly. The energy-resolving power of any ESA is defined by its dispersion and the widths of the energy-resolving object and image slits that immediately precede and follow the ESA, respectively. The use of BE, EB, and triple-sector instruments to measure energy-resolving power and the kinetic energy distribution of the precursor ion main beam is compared and discussed.  相似文献   

4.
Compound-specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry is an effective and risk-free means of investigating fatty acid metabolism. Straightforward analysis, however, leads to poor chromatographic resolution, while derivatization adds carbon thereby corrupting the starting stable isotopic composition. Hydropyrolysis is a new approach which defunctionalizes fatty acids to yield the corresponding n-alkanes thus retaining the carbon skeleton intact and improving chromatography, allowing the faithful measurement of carbon isotope ratios.  相似文献   

5.
This work describes the utilization of the laser ablation sector field inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) technique for the determination of uranium isotopic composition in a highly enriched uranium sample. The measurements were performed on a continuous ablation with low energy density and defocusing, which demonstrated to be the optimum to reach the best signal stability. The measurements were improved by adjusting the following parameters: RF power, laser beam diameter, defocusing of laser beam, laser energy, laser energy density, auxiliary gas and sample gas. The 235U/238U isotope ratio with its respective uncertainty was 16.36 ± 0.15 and its precision was 1.12 % relative standard deviation. The uncertainties were estimated following the ISO GUM, with a confidence level of 95.45 % (k = 2.00). When compared the isotope abundances to the Round Robin Exercise Number 3’s average results a difference of 0.46 % has been found and when compared to supplier’s value, the difference was 0.41 %. The results presented by the measurements revealed that the LA-ICP-MS technique offers a rapid and accurate alternative to measure uranium isotope ratios without any sample preparation, since it allows carrying out the measurements straight on the sample. Moreover, it preserves the testimony—very important for safeguards and nuclear forensics purposes.  相似文献   

6.
Compound-specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry is an important method for the detection of steroid abuse in athletes. However, steroids in their natural form exhibit poor chromatographic resolution, while derivatization adds carbon thereby corrupting the starting stable isotopic composition. Hydropyrolysis is a new approach, which defunctionalizes steroids but leaves their carbon skeleton intact. The process improves chromatography, allowing the faithful measurement of carbon isotope ratios and enabling a more effective apportionment for the source of steroids and their metabolites.  相似文献   

7.
Resonance ionization mass spectrometry offers extremely high sensitivity and elemental selectivity in microanalysis, but the isotopic precision attainable by this technique has been limited. Measured isotope ratios are sensitive to small fluctuations in the pointing, pulse timing, and wavelength of the resonance lasers. We show that, by minimizing these fluctuations using feedback controls and by power-broadening the optical transitions, we are able to measure chromium isotope ratios with statistics-limited precision better than 1%. Small additional improvements in reproducibility come from careful shaping of the electric field in the region where atoms are photoionized and from minimizing pulse-to-pulse variations in the time-of-flight mass spectrometer through which the photoions travel. The increased reproducibility of isotopic measurements on standard materials has enabled us to detect anomalous chromium isotopic abundances in presolar SiC grains extracted from primitive meteorites.  相似文献   

8.
Stable isotope analysis permits the tracking of physical, chemical, and biological reactions and source materials at a wide variety of spatial scales. We present a laser ablation isotope ratio mass spectrometry (LA‐IRMS) method that enables δ13C measurement of solid samples at 50 µm spatial resolution. The method does not require sample pre‐treatment to physically separate spatial zones. We use laser ablation of solid samples followed by quantitative combustion of the ablated particulates to convert sample carbon into CO2. Cryofocusing of the resulting CO2 coupled with modulation in the carrier flow rate permits coherent peak introduction into an isotope ratio mass spectrometer, with only 65 ng carbon required per measurement. We conclusively demonstrate that the measured CO2 is produced by combustion of laser‐ablated aerosols from the sample surface. We measured δ13C for a series of solid compounds using laser ablation and traditional solid sample analysis techniques. Both techniques produced consistent isotopic results but the laser ablation method required over two orders of magnitude less sample. We demonstrated that LA‐IRMS sensitivity coupled with its 50 µm spatial resolution could be used to measure δ13C values along a length of hair, making multiple sample measurements over distances corresponding to a single day's growth. This method will be highly valuable in cases where the δ13C analysis of small samples over prescribed spatial distances is required. Suitable applications include forensic analysis of hair samples, investigations of tightly woven microbial systems, and cases of surface analysis where there is a sharp delineation between different components of a sample. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The interest in compound-specific isotope analysis for product authenticity control and source differentiation in environmental sciences has grown rapidly during the last decade. However, the isotopic analysis of very polar analytes is a challenging task due to the lack of suitable chromatographic separation techniques which can be used coupled to isotope ratio mass spectrometry. In this work, we present the first method to measure carbon isotope compositions of the widely applied herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) by liquid chromatography coupled to isotope ratio mass spectrometry. We demonstrate that this analysis can be carried out either in cation exchange or in reversed-phase separation modes. The reversed-phase separation yields a better performance in terms of resolution compared with the cation exchange method. The measurement of commercial glyphosate herbicide samples show its principal applicability and reveals a wide range of δ13C values between ?24 and ?34 ‰ for different manufacturers. The absolute minimum amounts required to perform a precise and accurate determination of carbon isotope compositions of glyphosate and AMPA were in the sub-microgram range. The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA. Furthermore, it can be used for contaminant source allocation and product authenticity as well.  相似文献   

10.
Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.  相似文献   

11.
Molecular beam techniques are used to grow water films on Pt(111) with various incident angles and collision energies from 5 to 205 kJ/mol. The effect of the incident angle and collision energy on the porosity and surface area of the vapor-deposited water films was studied using nitrogen physisorption and infrared spectroscopy. At low incident energy (5 kJ/mol), the infrared spectra, which provide a direct measure of the surface area, show that the surface area increases with incident angle and levels off at angles > 65 degrees . This is in contrast to the nitrogen uptake data, which display a maximum near 65 degrees because of the decrease in nitrogen condensation in the larger pores that develop at high incident angles. Both techniques show that the morphology of vapor-deposited water films depends strongly on the incident kinetic energy. These observations are consistent with a ballistic deposition shadowing model used to describe the growth of highly porous materials at glancing angle. The dependence of film morphology on incident energy may have important implications for the growth of porous materials via glancing angle deposition and for the structure of interstellar ices.  相似文献   

12.
《Tetrahedron: Asymmetry》2005,16(15):2665-2671
Stereoselective deprotonation of epoxides with lithium amides can occur by abstraction of protons from more than one site. The site selectivity of the deprotonation of cyclohexene oxide by several chiral and achiral lithium amides has been investigated. 2H NMR has been used to measure the relative abundances of the isotopomers of the epoxide containing one deuterium. An isotopic stereoisomer, with deuterium in the site undergoing abstraction, reacts slower than its enantiomer and other isotopomers having protium in the same site due to a kinetic isotope effect. This results in a kinetic resolution yielding a relative excess of the less reactive isotopic stereoisomer. Thus, the relative abundance of such an enantiomer increases when compared with those having protium at the site in question as the reaction proceeds. It can be concluded that deprotonation of cyclohexene oxide using some chiral- and non-chiral lithium amides occurs by βsyn-deprotonation.  相似文献   

13.
同位素稀释热电离质谱法测定人血清中痕量铜和锌   总被引:7,自引:0,他引:7  
王军  赵墨田 《分析化学》2006,34(3):355-358
采用热电离同位素稀释质谱法(ID-TIMS)准确测定了欧盟标准物质与测量研究院(EC-JRC-IRMM)组织的国际测量评估计划IMEP-17人血清样品中的痕量铜和锌。由于锌和铜都是易受污染的元素,本工作建立了仅用少量硝酸消解的低流程本底和适于热电离质谱测量的生物基体血清中痕量铜和锌的样品前处理方法;采用适当比例的硅胶和磷酸作为电离增强剂,在热电离质谱(TIMS)测量时获得了较高强度且稳定的铜和锌离子束;血清中痕量铜和锌的测量结果可直接溯源到国际单位mole。2种人血清样品中铜和锌测量结果的不确定度(k=2)分别为0.94%、0.83%和0.49%,测量值被EC-JRC-IRMM采用作为该样品的标准值。  相似文献   

14.
The isotopic composition of germanium was measured in a range of terrestrial materials using solid-source mass spectrometry. An ion-enhancing gel loading technique was developed to enable measurable ion beams to be produced. Within the limits of experimental error, no variations in isotopic abundances were found in any of the reagents or minerals analysed. The extent of mass discrimination was determined using the double spike technique. Good agreement is obtained between the measured isotope abundances and other published data apart from linear mass fractionation effects.  相似文献   

15.
Pulsed laser evaporation coupled with resonance ionization time-of-flight mass spectrometry has been used to measure the isotopic abundance of lead and bismuth. A pulsed Nd:YAG laser was used to evaporate the metal atoms, the evaporated atoms were then detected by one color two photon resonance ionization and time-of-flight mass spectrometry. The arrival time distributions of atoms evaporated by pulsed laser, and the isotopic abundances of Pb and Bi were measured. Our results show that this method is good enough for measuring the isotopic abundances of Pb and Bi with high sensitivity and selectivity.  相似文献   

16.
In stable isotope ratio mass spectrometry (IRMS), the stable isotopic composition of samples is measured relative to the isotopic composition of a working gas. This measured isotopic composition must be converted and reported on the respective international stable isotope reference scale for the accurate interlaboratory comparison of results. This data conversion procedure, commonly called normalization, is the first set of calculations done by the users. In this paper, we present a discussion and mathematical formulation of several existing routinely used normalization procedures. These conversion procedures include: single-point anchoring (versus working gas and certified reference standard), modified single-point normalization, linear shift between the measured and the true isotopic composition of two certified reference standards, two-point and multi-point linear normalization methods. Mathematically, the modified single-point, two-point, and multi-point normalization methods are essentially the same. By utilizing laboratory analytical data, the accuracy of the various normalization methods (given by the difference between the true and the normalized isotopic composition) has been compared. Our computations suggest that single-point anchoring produces normalization errors that exceed the maximum total uncertainties (e.g. 0.1 per thousand for delta(13)C) often reported in the literature, and, therefore, that it must not be used for routinely anchoring stable isotope measurement results to the appropriate international scales. However, any normalization method using two or more certified reference standards produces a smaller normalization error provided that the isotopic composition of the standards brackets the isotopic composition of unknown samples.  相似文献   

17.
We designed and demonstrated the unique abilities of the first gas chromatography–molecular rotational resonance spectrometer (GC‐MRR). While broadly and routinely applicable, its capabilities can exceed those of high‐resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas‐phase separations. GC‐MRR is shown to be ideal for compound‐specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC‐MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.  相似文献   

18.
41Ca ultratrace determination by diode-laser-based resonance ionization mass spectrometry with extremely high isotopic selectivity is presented. Application to environmental dosimetry of nuclear reactor components, to cosmochemical investigations of production cross sections, and biomedical isotope-tracer studies of human calcium kinetics are discussed. Future investigations are possible use in 41Ca-radiodating. Depending on the application, 41Ca isotopic abundances in the range of 10–9 to 10–15 relative to the dominant stable isotope 40Ca must be determined. Either double- or triple-resonance optical excitation with narrow-band extended cavity diode lasers and subsequent non-resonant photoionization of calcium in a collimated atomic beam were used. The resulting photoions are detected with a quadrupole mass spectrometer optimized for background reduction and neighboring mass suppression. Applying the full triple-resonance scheme provides a selectivity of ∼ 5 × 1012 in the suppression of neighboring isotopes and > 108 for isobars, together with an overall detection efficiency of ∼ 5 × 10–5. Measurements on a variety of sample types are discussed; the accuracy and reproducibility of the resulting 41Ca/40Ca isotope ratios was better than 5%. Received: 4 January 2001 / Revised: 19 February 2001 / Accepted: 27 February 2001  相似文献   

19.
For Fourier transform mass spectrometry analysis of high mass ions, the signals from closely spaced isotope peaks undergo periodic destructive interference, producing a beat pattern in the time-domain signal. The mass spectra that are obtained by sampling transient signals for less than two beat periods exhibit an error in the relative abundances that are measured. This effect is shown to cause significant errors in the measurement of the relative abundances of the components of polymer distributions, leading to errors in the derived average molecular weights for such samples. Computer simulations show that isotope beating causes this error to increase as the duration of an acquired transient becomes short compared to the beating period. This error becomes insignificant when the transient is acquired for longer than twice the beat period. Experimental data are presented for polymers in which an oligomeric distribution of monoisotopic peaks is produced by stored waveform inverse Fourier transform ejection of all 13C-containing isotope peaks. The data show that the isotope beating-induced abundance errors are eliminated when there are no isotope peaks present.  相似文献   

20.
The simultaneous high resolution and accurate mass measurements possible with Fourier transform ion cyclotron resonance mass spectrometry coupled with the gentle ionization of electrospray hold attractions for protein, peptide, and oligonucleotide characterization, including multistage-mass spectrometry measurements for assignment of fragment masses and greater confidence in structural measurements. The detection of cyclotron motion over extended periods of time (in some cases for several minutes) allows higher resolution and mass accuracy. Generally, signal duration has been considered to be limited primarily by background pressure, with ion-neutral collisions leading to the reduction and dephasing of cyclotron motion, causing signal loss. However, recent theoretical work has shown that the ion cloud stability that is a prerequisite for high performance measurements is highly dependent on the electric field generated by the ion cloud, thus giving rise to a minimum number of charges or ions required for extended time-domain signals. The effects of ion population on ion cloud stability and signal duration, and the subsequent effects on resolution and measured isotopic abundances are reported. Individual time-domain signals for bovine insulin isotopic peaks were extracted to allow a comparison of the damping rates for each of these ion clouds and the measured time-domain amplitude maxima are shown to provide a better match with the theoretically predicted isotopic abundances for insulin. These results show that different damping rates of ions of very similar mass, but different ion cloud population sizes, can have dramatic effects on the observed isotopic patterns. Additionally, more accurate, high resolution spectra can be produced by correcting for the effects of the different damping rates that are observed for different ion population sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号