首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Kyozi Kawasaki  Takao Ohta 《Physica A》1982,116(3):573-593
A certain class of nonlinear evolution equations of one space dimension which permits kink type solutions and includes one-dimensional time-dependent Ginzburg-Landau (TDGL) equations and certain nonlinear wave equations is studied in some strong coupling approximation where the problem can be reduced to the study of kink dynamics. A detailed study is presented for the case of TDGL equation with possible applications to the late stage kinetics of order-disorer phase transitions and spinodal decompositions. A special case of kink dynamics of nonlinear wave equations is found to reduce to the Toda lattice dynamics. A new conservation law for dissipative systems is found which corresponds to the momentum conservation law for wave equations.  相似文献   

2.
The problem of the nonlinear interaction between the fourth sound and an acoustic wave propagating in a porous medium filled with superfluid helium is solved. Based on the Landau equations of quantum fluid dynamics and on the Biot theory of mechanical waves in a porous medium, nonlinear wave equations are derived for studying the aforementioned interaction. An expression is obtained for the vertex that determines the excitation of an acoustic wave by two waves of the fourth sound. The possibility of an experimental observation of this process is estimated.  相似文献   

3.
In this paper, we construct the rogue wave solutions of the sixth-order nonlinear Schrödinger equation on a background of Jacobian elliptic functions dn and cn by means of the nonlinearization of a spectral problem and Darboux transformation approach. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.  相似文献   

4.
We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.  相似文献   

5.
Meromorphic traveling wave solutions of the Kawahara equation and the modified Kawahara equations are studied. An algorithm for constructing meromorphic solutions in explicit form is described. The classification problem for meromorphic solutions of autonomous nonlinear ordinary differential equations is discussed.  相似文献   

6.
《Physics letters. A》2003,318(6):526-536
We propose a simple general method for analytic determination of the boundaries of the expanding nonlinear oscillation zone occurring in the decay of a step problem for non-integrable dispersive wave equations. A remarkable feature of the method is that it essentially uses only the dispersionless limit and the linear dispersion relation of the original nonlinear dispersive wave system. A concrete example pertaining to collisionless plasma dynamics is considered and complete agreement with the results of earlier numerical simulations is demonstrated.  相似文献   

7.
Semiclassically concentrated states of the nonlinear Schrödinger equation (NLSE) with unitary nonlinearity, representing multidimensional localized wave packets, are constructed on the basis of the Maslov complex germ theory. A system of ordinary differential equations of Hamilton-Ehrenfest (HE) type, describing the motion of the wave packet centroid, is derived. The structure of the HE system is strongly influenced by the initial conditions of the Cauchy problem for the NLSE. Wave packets of Gaussian type are constructed in an explicit form. Possible use of the solutions constructed in the problem of optical pulse propagation in a nonlinear medium with nonstationary dispersion is discussed.  相似文献   

8.
Filiz T  scan  Ahmet Bekir 《中国物理 B》2010,19(8):80201-080201
<正>In this paper,we establish travelling wave solutions for some nonlinear evolution equations.The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the coupled Klein-Gordon equations.The obtained results include periodic and solitary wave solutions.The first integral method presents a wider applicability to handling nonlinear wave equations.  相似文献   

9.
The problem of optical bistability in a standing wave cavity in the steady state leads to a pair of coupled, nonlinear, ordinary differential equations for the forward and backward waves. Here an approach different from the truncation of hierarchy and spatial average is applied to obtain this pair of equations. The results are compared with those obtained from the other approaches.  相似文献   

10.
First a general introduction on the notion of surface waves on solids (types of different waves), a reminder on the simplest familiar nonlinear dispersive model equations, and another on the basic equations of nonlinear elasticity are given. Then attention is focused on the linear surface wave problem. The main properties of nonlinear surface waves in the absence of dispersion are studied next by use of several asymptotic techniques. The additional effects of dispersion are then considered and combined with those of nonlinearity with an emphasis on the case of so-called shear-horizontal surface waves and solitary-wave solutions for envelope signals. Finally, typical nonlocality is introduced for nonlinear Rayleigh surface waves, and general comments on more general two-dimensional (in propagation space) nonlinear strain waves on structures are evoked by way of conclusion.  相似文献   

11.
By a perturbation method two coupled nonlinear partial differential equations are obtained for the nonlinear evolution of a three dimensional transverse wave packet in a hot plasma including the effect of its interaction with a long wavelength ion-acoustic wave. From these two equations a nonlinear dispersion relation is obtained, from which the instability condition of a uniform transverse wave train including the effect of its interaction, both at resonance and at nonresonance with a long wavelength ion-acoustic wave, are deduced. Resonance occurs when the component of group velocity of the longitudinal wave along the direction of propagation of the ion-acoustic wave is equal to the phase velocity of the wave. Assuming the usual type of dependence of amplitude on space and time the coupled equations are transformed into two other coupled equations, which reduced to a single nonliear Schrödingsr equation when three dimensionality is disregarded. It is found that these three transformed equations cannot give instability condition at resonance.On leave fromThe Department of Mathematics, University of Kalyani, West Bengal, India.  相似文献   

12.
Mathematical modeling of many autonomous physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear evolution equations plays a significant role in the study of nonlinear physical phenomena. In this article, the enhanced (G′/G)-expansion method has been applied for finding the exact traveling wave solutions of longitudinal wave motion equation in a nonlinear magneto-electro-elastic circular rod. Each of the obtained solutions contains an explicit function of the variables in the considered equations. It has been shown that the applied method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering fields.  相似文献   

13.
A method of adiabatic elimination is proposed based on the use of the Furutsu-Novikov formula. A case of two nonlinear Langevin equations and a spatially distributed problem typical for the nonlinear wave propagation in random media have been considered. The method not only permits adiabatic elimination of the fast-decaying variable from the equation for the slow-decaying one but also allows for the return effect of the slow-decaying subsystem on the fast-decaying one.  相似文献   

14.
An exact solution is obtained for the equations that describe nonlinear ion-acoustic waves in a dusty plasma. It is shown that the solution can be in the form of nonlinear periodic waves, solitons, and supernonlinear waves whose trajectories envelope one or several separatrices in the phase portrait of the wave. Profiles of physical quantities in the wave are constructed. The supernonlinear waves are shown to be of two types, subsonic (type 1) and supersonic (type 2). Existence regions of supernonlinear waves of both types and solitons are constructed in the plane of the problem parameters.  相似文献   

15.
Acoustic phase conjugation is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The other is associated with sound interactions with bubble oscillations whose frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the phase conjugation problem are derived, expressions for acoustic wave amplitudes with a conjugate wave front are obtained and compared for various frequencies of the excited bubble oscillations.  相似文献   

16.
《Physics letters. A》2006,353(6):487-492
By means of computerized symbolic computation and a modified extended tanh-function method for constructing multiple traveling wave solutions of nonlinear physical equations is presented and implemented in a computer algebraic system. Applying this method, we consider some of nonlinear equations of special interest in physics namely, the Broer–Kaup–Kupershmidt, nonlinear coupled plasma, and coupled-nonlinear reaction–diffusion equations. As a results, we can successfully recover the previously known solitary wave solutions that had been found by other sophisticated methods. The method is straightforward and concise, and it can also be applied to other nonlinear equations in physics.  相似文献   

17.
We present a simple iterative scheme to solve numerically a regularized internal wave model describing the large amplitude motion of the interface between two layers of different densities. Compared with the original strongly nonlinear internal wave model of Miyata [10] and Choi and Camassa [2], the regularized model adopted here suppresses shear instability associated with a velocity jump across the interface, but the coupling between the upper and lower layers is more complicated so that an additional system of coupled linear equations must be solved at every time step after a set of nonlinear evolution equations are integrated in time. Therefore, an efficient numerical scheme is desirable. In our iterative scheme, the linear system is decoupled and simple linear operators with constant coefficients are required to be inverted. Through linear analysis, it is shown that the scheme converges fast with an optimum choice of iteration parameters. After demonstrating its effectiveness for a model problem, the iterative scheme is applied to solve the regularized internal wave model using a pseudo-spectral method for the propagation of a single internal solitary wave and the head-on collision between two solitary waves of different wave amplitudes.  相似文献   

18.
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2 1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.  相似文献   

19.
刘煜 《中国物理 B》2012,(11):41-46
The solutions to a linear wave equation can satisfy the principle of superposition,i.e.,the linear superposition of two or more known solutions is still a solution of the linear wave equation.We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic,triangle,and exponential functions,and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics.The linear superposition solutions to the generalized KdV equation K(2,2,1),the Oliver water wave equation,and the k(n,n) equation are given.The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed,and the reason why the solutions with the forms of hyperbolic,triangle,and exponential functions can form the linear superposition solutions is also discussed.  相似文献   

20.
The observed nonclassical power-law dependence of the amplitude of the second harmonic wave on the amplitude of a harmonic pump wave is explained as a phenomenon associated with two types of nonlinearity in a structurally inhomogeneous medium. An approach to solving the inverse problem of determining the nonlinearity parameters and the exponent in the above-mentioned dependence is demonstrated. To describe the effects of strongly pronounced nonlinearity, equations containing a double nonlinearity and generalizing the Hopf and Burgers equations are proposed. The possibility of their exact linearization is demonstrated. The profiles, spectral composition, and average wave intensity in such doubly nonlinear media are calculated. The shape of the shock front is found, and its width is estimated. The wave energy losses that depend on both nonlinearity parameters—quadratic and modular—are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号