首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Which are the teaching methods that actually contribute to the learning of mathematics? The answer to this certainly is the holy grail of didactic and pedagogy, and should be supported by large scale statistical evidence. Our article aims at providing an initial step into this direction by first illustrating a teaching paradigm that is suited for the generation of large scale data sets: based on industry best practice quality assurance standards we introduce the Kaizen teaching paradigm which enforces Kolb’s reflective learning cycle on the students’ side. Second, we present and analyze the data we obtained through our pilot implementation at a engineering freshman mathematics course in the Sultanate of Oman. These emphasize the effectiveness of Kaizen teaching and once again show the necessity of continuous learning. A practice that seems to be forgotten in traditional university engineering courses due to the mere size of the audience. In particular it seems that a Markovian estimator for students’ performance may have to be considered.  相似文献   

4.
5.
Terry Wood 《ZDM》2000,32(5):149-154
The widespread acceptance in the view that learning is an active constructive process requires teaching that is fundamentally different from classical pedagogy. It is generally accepted that teaching must consist of highly interactive and discursive situations. However, these differences in teaching are not well understood. In this paper, examples of teaching and the ways these distinctions influence children’s opportunities for learning.  相似文献   

6.
Berinderjeet Kaur 《ZDM》2008,40(6):951-962
The learner’s perspective study, motivated by a strong belief that the characterization of the practices of mathematics classrooms must attend to learner practice with at least the same priority as that accorded to teacher practice, is a comprehensive study that adopts a complementary accounts methodology to negotiate meanings in classrooms. In Singapore, three mathematics teachers recognized for their locally defined ‘teaching competence’ participated in the study. The comprehensive sets of data from the three classrooms have been used to explore several premises related to the teaching and learning of mathematics. In this paper the student interview data and the teacher interview data were examined to ascertain what do students attach importance to and what do teachers attach importance to in a mathematics lesson? The findings of the student interview data showed that they attached importance to several sub-aspects of the three main aspects, i.e., exposition, seatwork and review and feedback of their teachers’ pedagogical practices. The findings of the teacher interview data showed that they attached importance to student’s self assessment, teacher’s demonstration of procedures, review of prior knowledge and close monitoring of their student’s progress in learning and detailed feedback of their work. It was also found that teachers and students did attach importance to some common lesson events.  相似文献   

7.
Justification is a core mathematics practice. Although the purposes of justification in the mathematician community have been studied extensively, we know relatively little about its role in K-12 classrooms. This paper documents the range of purposes identified by 12 middle grades teachers who were working actively to incorporate justification into their classrooms and compares this set of purposes with those documented in the research mathematician community. Results indicate that the teachers viewed justification as a powerful practice to accomplish a range of valued classroom teaching and learning functions. Some of these purposes overlapped with the purposes in the mathematician community; others were unique to the classroom community. Perhaps surprisingly, absent was the role of justification in verifying mathematical results. An analysis of the relationship between the purposes documented in the mathematics classroom community and the research mathematician community highlights how these differences may reflect the distinct goals and professional activities of the two communities. Implications for mathematics education and teacher development are discussed.  相似文献   

8.
9.
This article attempts to present a novel application of a method of measuring accuracy for academic success predictors that could be used as a standard. This procedure is known as the receiver operating characteristic (ROC) curve, which comes from statistical decision techniques. The statistical prediction techniques provide predictor models and their goodness-of-fit; in addition, ROC analysis allows to assess the accuracy of the ability to discriminate from success and failures cases of a classifier or predictive model, and so it could be considered complementary to others more commonly used. Thus, the ROC curve is used to compare and interpret the relative contribution of each university entrance factor in the correct classification as success or failure of the academic performance, as well as to establish cut-off scores for admissions and counselling purposes. It is revealed that the ROC analysis allows us to identify the better university entrance factor for each subject in predicting students’ academic success.  相似文献   

10.
The importance of beliefs for the teaching and learning of mathematics is widely recognized among mathematics educators. In this special issue, we explicitly address what we call “beliefs and beyond” to indicate the larger field surrounding beliefs in mathematics education. This is done to broaden the discussion to related concepts (which may not originate in mathematics education) and to consider the interconnectedness of concepts. In particular, we present some new developments at the conceptual level, address different approaches to investigate beliefs, highlight the role of student beliefs in problem-solving activities, and discuss teacher beliefs and their significance for professional development. One specific intention is to consider expertise from colleagues in the fields of educational research and psychology, side by side with perspectives provided by researchers from mathematics education.  相似文献   

11.
The prevalence of prediction in grade-level expectations in mathematics curriculum standards signifies the importance of the role prediction plays in the teaching and learning of mathematics. In this article, we discuss benefits of using prediction in mathematics classrooms: (1) students’ prediction can reveal their conceptions, (2) prediction plays an important role in reasoning and (3) prediction fosters mathematical learning. To support research on prediction in the context of mathematics education, we present three perspectives on prediction: (1) prediction as a mental act highlights the cognitive aspect and the conceptual basis of one's prediction, (2) prediction as a mathematical activity highlights the spectrum of prediction tasks that are common in mathematics curricula and (3) prediction as a socio-epistemological practice highlights the construction of mathematical knowledge in classrooms. Each perspective supports the claim that prediction when used effectively can foster mathematical learning. Considerations for supporting the use of prediction in mathematics classrooms are offered.  相似文献   

12.
Diversity and differentiation within our classrooms, at all levels of education, is nowadays a fact. It has been one of the biggest challenges for educators to respond to the needs of all students in such a mixed-ability classroom. Teachers’ inability to deal with students with different levels of readiness in a different way leads to school failure and all the negative outcomes that come with it. Differentiation of teaching and learning helps addressing this problem by respecting the different levels that exist in the classroom, and by responding to the needs of each learner. This article presents an action research study where a team of mathematics instructors and an expert in curriculum development developed and implemented a differentiated instruction learning environment in a first-year engineering calculus class at a university in Cyprus. This study provides evidence that differentiated instruction has a positive effect on student engagement and motivation and improves students’ understanding of difficult calculus concepts.  相似文献   

13.
Stephen Lerman 《ZDM》2013,45(4):623-631
Whilst research on the teaching of mathematics and the preparation of teachers of mathematics has been of major concern in our field for some decades, one can see a proliferation of such studies and of theories in relation to that work in recent years. This article is a reaction to the other papers in this special issue but I attempt, at the same time, to offer a different perspective. I examine first the theories of learning that are either explicitly or implicitly presented, noting the need for such theories in relation to teacher learning, separating them into: socio-cultural theories; Piagetian theory; and learning from practice. I go on to discuss the role of social and individual perspectives in authors’ approach. In the final section I consider the nature of the knowledge labelled as mathematical knowledge for teaching (MKT). I suggest that there is an implied telos about ‘good teaching’ in much of our research and that perhaps the challenge is to study what happens in practice and offer multiple stories of that practice in the spirit of “wild profusion” (Lather in Getting lost: Feminist efforts towards a double(d) science. SUNY Press, New York, 2007).  相似文献   

14.
By continuing a contrast with the DNR research program, begun in Harel and Koichu (2010), I discuss several important issues with respect to teaching and learning mathematics that have emerged from our research program which studies learning that occurs through students’ mathematical activity and indicate issues of complementarity between DNR and our research program. I make distinctions about what we mean by inquiring into the mechanisms of conceptual learning and how it differs from work that elucidates steps in the development of a mathematical concept. I argue that the construct of disequilibrium is neither necessary nor sufficient to explain mathematics conceptual learning. I describe an emerging approach to instruction aimed at particular mathematical understandings that fosters reinvention of mathematical concepts without depending on students’ success solving novel problems.  相似文献   

15.
Bob Perry 《ZDM》2007,39(4):271-286
Thirteen Australian teachers who had been nominated by their professional mathematics teachers’ associations as excellent teachers of elementary school mathematics were interviewed on their beliefs about mathematics, mathematics learning and mathematics teaching. In particular, they were asked to discuss the characteristics of effective teachers of mathematics and excellent mathematics lessons. In spite of their differences in location, experience and teacher education, the teachers displayed a lot of consistency in their responses and in their lists of characteristics. While this group of teachers cannot be claimed to be representative of Australian teachers, they have provided a snapshot of what is regarded as effectiveness in mathematics education in Australian elementary schools.  相似文献   

16.
ABSTRACT

A literature review establishes a working definition of recreational mathematics: a type of play which is enjoyable and requires mathematical thinking or skills to engage with. Typically, it is accessible to a wide range of people and can be effectively used to motivate engagement with and develop understanding of mathematical ideas or concepts. Recreational mathematics can be used in education for engagement and to develop mathematical skills, to maintain interest during procedural practice and to challenge and stretch students. It can also make cross-curricular links, including to history of mathematics. In undergraduate study, it can be used for engagement within standard curricula and for extra-curricular interest. Beyond this, there are opportunities to develop important graduate-level skills in problem-solving and communication. The development of a module ‘Game Theory and Recreational Mathematics’ is discussed. This provides an opportunity for fun and play, while developing graduate skills. It teaches some combinatorics, graph theory, game theory and algorithms/complexity, as well as scaffolding a Pólya-style problem-solving process. Assessment of problem-solving as a process via examination is outlined. Student feedback gives some indication that students appreciate the aims of the module, benefit from the explicit focus on problem-solving and understand the active nature of the learning.  相似文献   

17.
If the use of a computer algebra system (CAS) is to be meaningful and have an impact on students, then it must be grounded in good pedagogy and have some clearly defined goals. It is the authors' belief that an important goal for teaching mathematics with the CAS is that courses be designed so that students can become active participants in their learning experience, planning the problem-solving strategies and carrying them out. The CAS becomes an important tool and a partner in this learning process. To this end, here the authors' have linked the use of the CAS to an existing classification scheme for Mathematical Tasks, called the MATH Taxonomy, and illustrated, through concrete examples, how the goals of teaching and learning of mathematics can be set using this classification together with the CAS.  相似文献   

18.
Ngai-Ying Wong 《ZDM》2007,39(4):301-314
Twelve experienced mathematics teachers in Hong Kong were invited to face-to-face semi-structured interviews to express their views about mathematics, about mathematics learning and about the teacher and teaching. Mathematics was generally regarded as a subject that is practical, logical, useful and involves thinking. In view of the abstract nature of the subject, the teachers took abstract thinking as the goal of mathematics learning. They reflected that it is not just a matter of “how” and “when”, but one should build a path so that students can proceed from the concrete to the abstract. Their conceptions of mathematics understanding were tapped. Furthermore, the roles of memorisation, practices and concrete experiences were discussed, in relation with understanding. Teaching for understanding is unanimously supported and along this line, the characteristics of an effective mathematics lesson and of an effective mathematics teacher were discussed. Though many of the participants realize that there is no fixed rule for good practices, some of the indicators were put forth. To arrive at an effective mathematics lesson, good preparation, basic teaching skills and good relationship with the students are prerequisite.  相似文献   

19.
Luis Radford 《ZDM》2008,40(2):317-327
This paper is a commentary on the problem of networking theories. My commentary draws on the papers contained in this ZDM issue and is divided into three parts. In the first part, following semiotician Yuri Lotman, I suggest that a network of theories can be conceived of as a semiosphere, i.e., a space of encounter of various languages and intellectual traditions. I argue that such a networking space revolves around two different and complementary “themes”—integration and differentiation. In the second part, I advocate conceptualizing theories in mathematics education as triplets formed by a system of theoretical principles, a methodology, and templates of research questions, and attempt to show that this tripartite view of theories provides us with a morphology of theories for investigating differences and potential connections. In the third part of the article, I discuss some examples of networking theories. The investigation of limits of connectivity leads me to talk about the boundary of a theory, which I suggest defining as the “limit” of what a theory can legitimately predicate about its objects of discourse; beyond such an edge, the theory conflicts with its own principles. I conclude with some implications of networking theories for the advancement of mathematics education.  相似文献   

20.
Tao Wang  Jinfa Cai 《ZDM》2007,39(4):315-327
This study investigates US teachers’ cultural beliefs concerning effective mathematics teaching using semi-structured interviews with 11 experienced teachers. For US teachers, effective teaching is student-centered. Cognitively appropriate mathematical content should be understood through many hands-on activities that allow students to explore by themselves the relationship between mathematical knowledge and their life experiences. Correspondingly, the US teachers view an effective teacher as a facilitator who is sensitive to student social and cognitive needs and is skillful at organizing collaborative learning. The result of this study helps researchers and educators understand the student-centered learning model in US classrooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号