首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tiled-grating compression of multiterawatt laser pulses   总被引:1,自引:0,他引:1  
High-energy petawatt lasers require large diffraction gratings for pulse compression. As an alternative to meter-sized gratings, we demonstrate the capability of a tiled-grating system to compress multiterawatt subpicosecond laser pulses. Using a 100 TW-class Nd:glass chirped-pulse amplification laser facility, we report on the performance of a two-grating mosaic to compress high-energy pulses to 2.5 J, 450 fs (5.5 TW) in air with a beam size of 50 mm and energy transmission of 63%. Stability of the grating mosaic alignment was realized by use of an accurate nanopositioning optomechanical system. The output Gaussian spectrum was preserved from grating-gap spectral clipping and was free of modulation.  相似文献   

2.
The formation of periodic surface structures by ultrashort laser pulses was observed experimentally and explained theoretically. The experiments were performed on graphite with picosecond laser pulses. The spatial period of the structures is of the order of the wavelength of the incident radiation, and the orientation of the structures is correlated with the direction of polarization of the light. The key point of the theoretical model proposed is resonance excitation of surface electromagnetic waves, which under conditions such that the temperature of the electronic subsystem is decoupled from the temperature of the crystal lattice causes a “temperature grating” to be written on the flat solid surface of the sample while the laser pulse is being applied on account of the temperature dependence of the surface impedance. The formation of a periodic surface profile from the temperature grating occurs by the volume expansion of a melted layer near the surface of the material. For typical values of the surface tension and viscosity for metals, there is not enough time for the periodic profile to be resorbed before the liquid layer solidifies. The formation of periodic surface structures is delayed in time relative to the laser pulse. Zh. éksp. Teor. Fiz. 115, 675–688 (February 1999)  相似文献   

3.
We present a study of the temporal compression of nanosecond laser pulses resulting from the coherent control peculiarities of the propagation dynamics in a regime of electromagnetically induced transparency. We describe the general theoretical framework and discuss the crucial conditions required in order to experimentally realize such a temporal compression scheme. A proof-of-concept experimental realization of a scheme of this type in a sample of hot sodium vapors is currently being implemented: we describe in detail the experimental setup designed for this purpose.  相似文献   

4.
邓莉  廖睿  刘叶新  寿倩  文锦辉  林位株 《物理学报》2003,52(8):1938-1942
采用二次谐波-频谱分辨光闸法对克尔透镜锁模钛宝石激光器输出的飞秒脉冲的振幅和相位 进行诊断,测得其脉冲包络是双曲正割型的,而相位则近似为时间的三次幂形式. 通过对脉 冲频域相位的拟合,诊断出二阶群速度色散是造成脉冲啁啾、导致脉冲展宽的主要原因. 利 用棱镜对补偿二阶群速度色散,进一步将17 fs啁啾脉冲压缩至半高全宽为8.5 fs的近似转 换极限脉冲. 关键词: 飞秒脉冲 二次谐波-频谱分辨光闸法 群速度色散  相似文献   

5.
The width of KrCl laser pulses has been compressed from 5.2 ns to less than 800 ps using naphthalene as the saturable absorber dye. It was found that the width of the compressed laser pulse decreased with both the input laser intensity and the concentration of naphthalene in the solution. The pulse shortening mechanism is attributed to excited state S2-Sn transitions in naphthalene.  相似文献   

6.
By numerical simulations and analysis, we proposed a fiber with multi-hollow-core structure for optical pulse compression of high energy ultrashort laser pulses. In this scheme, different parts of a high-energy flat-top pulse are coupled into different hollow cores of such fiber and each of the cores functions as an independent traditional hollow-core fiber compressor. After the multi-hollow-core fiber, the output beams are collimated and compressed to few-cycle level. Then they can be focused to ultra-high intensity. This method can easily be scaled to compressing pulses of large beam size with high energy without limit in principle.  相似文献   

7.
Zhao QZ  Malzer S  Wang LJ 《Optics letters》2007,32(13):1932-1934
The evolution of surface morphology of tungsten irradiated by single-beam femtosecond laser pulses is investigated. Ripplelike periodic structures have been observed. The period of these ripples does not show a simple relation to the wavelength and angle of incidence. The orientation of ripples is aligned perpendicularly to the direction of polarization for linearly polarized light. Surprisingly, we find that the alignment of the ripple structure turned left or right by 45 degrees with respect to the incident plane when using right and left circularly polarized light, respectively. The period of the ripple can be controlled by the pulse energy, the number of pulses, and the incident angle. We find a clear threshold for the formation as a function of pulse energy and number of pulses. The mechanism for the ripple formation is discussed, as well as potential applications in large-area structuring of metals.  相似文献   

8.
Fundamental mechanism of femtosecond-laser-induced periodic surface nanostructure formation has been investigated under the condition using superimposed multiple shots at lower fluence than the single-pulse ablation threshold. With increasing the shot number of low-fluence fs-laser pulses, the periodic nanostructure develops through the bonding structure change of target material, the nanoscale ablation with optical near-fields induced around the high curvatures, and the excitation of surface plasmon polaritons (SPPs) to create the nano-periodicity in the surface structure. It is confirmed that non-thermal interaction at the surface plays the crucial role in the nanostructure formation. Based on the mechanism, we have demonstrated that the periodic nanostructure formation process can be controlled to fabricate a homogeneous nanograting on the target surface, using a two-step ablation process in air. The experimental results obtained represent exactly the nature of a single spatial standing SPP wave mode that generates periodically enhanced near-fields for the nanograting formation. The calculated results for a model target reproduce well the nanograting period and explain the characteristic properties observed in the experiment.  相似文献   

9.
Formation of periodic subwavelength ripples on a metallic tungsten surface is investigated through a line-scribing method under the irradiation of 800?nm, 50 fs to 8 ps ultra-short laser pulses. The distinctive features of the induced ripple structures are described in detail with different laser parameters. Experimental measurements reveal that with gradual decrease of the laser fluence, the pulse duration or the scanning speed, the ripple period is inclined to reduce but the ripple depth tends to become pronounced. Theoretical analyses suggest that the transient dielectric function change of the tungsten surface mainly originates from the nonequilibrium distribution of electrons due to the d-band transitions. A sandwich-like physical model of air?Cplasma?Ctarget is proposed and the excitation of a surface plasmon polaritonic (SPP) wave is supposed to occur on the interface between the metallic target and the electron plasma layer. Formation of ripples can be eventually attributed to the laser?CSPP interference. Theoretical interpretations are consistent with the experimental observations.  相似文献   

10.
Subfemtosecond bursts of extreme ultraviolet radiation, facilitated by a process known as high-order harmonic generation, are a key ingredient for attosecond metrology, providing a tool to precisely initiate and probe ultrafast dynamics in the microcosms of atoms, molecules, and solids. These ultrashort pulses are always, and as a by-product of the way they are generated, accompanied by laser-induced recollisions of electrons with their parent ions. By using a few-cycle infrared (λ(0)=2.1 μm) driving laser, we were able to directly excite high-energy (~870 eV) inner-shell electrons through laser-induced electron recollision, opening the door to time-resolved studies of core-level and concomitant multielectron dynamics.  相似文献   

11.
12.
We investigate the possibility of optical pulse compression of high energy ultrashort laser pulses in an argon-filled planar waveguide, based on two level coupled mode theory and the full 3D nonlinear Schr?dinger equation. We derive general expressions for controlling the spatial beam profile and the extent of the spectral broadening. The analysis and simulations suggest that the proposed method should be appropriate for optical pulse compression of ultrashort laser pulses with energies as high as 600 mJ.  相似文献   

13.
We present a theoretical study of temporal compression of a short-wavelength laser pulse predicted in a real, Doppler-broadened, atomic system. The compression is the result of the coherent control peculiarities of electromagnetically induced transparency-propagation dynamics. Numerical results are reported and discussed, showing a temporal compression of 2 orders of magnitude (from 10 ns to 100 ps) of a 106.7-nm laser pulse in argon atoms at room temperature.  相似文献   

14.
利用波长为800 nm的飞秒激光,在空气和去离子水中诱导钛表面形成不同的周期条纹结构。在空气中,激光能量密度为0.265 J/cm2时,钛表面主要形成周期为500~560 nm低空间频率条纹结构;激光能量密度为0.102 J/cm2时,主要形成的是周期为220~340 nm高空间频率条纹结构。两种条纹均垂直于入射激光偏振方向,且条纹周期随着脉冲重叠数的增大而增大。在水中,除形成垂直激光偏振方向、周期为215~250 nm的高空间频率条纹结构,还形成了平行于激光偏振方向且周期约为入射激光波长八分之一的高空间频率条纹结构。利用表面等离子体理论、二次谐波及Sipe理论对各种周期条纹结构的形成机理进行分析,发现周期条纹结构的形成与钛表面氧化层有密切的关系。  相似文献   

15.
A relativistically intense femtosecond laser pulse propagating in a plasma channel undergoes dramatic photon deceleration while propagating a distance on the order of a dephasing length. The deceleration of photons is localized to the back of the pulse and is accompanied by compression and explosive growth of the ponderomotive potential. Fully explicit particle-in-cell simulations are applied to the problem and are compared with ponderomotive guiding center simulations. A numerical Wigner transform is used to examine local frequency shifts within the pulse and to suggest an experimental diagnostic of plasma waves inside a capillary.  相似文献   

16.
In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 µm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.  相似文献   

17.
利用波长为800 nm的飞秒激光,在空气和去离子水中诱导钛表面形成不同的周期条纹结构。在空气中,激光能量密度为0.265 J/cm2时,钛表面主要形成周期为500~560 nm低空间频率条纹结构;激光能量密度为0.102 J/cm2时,主要形成的是周期为220~340 nm高空间频率条纹结构。两种条纹均垂直于入射激光偏振方向,且条纹周期随着脉冲重叠数的增大而增大。在水中,除形成垂直激光偏振方向、周期为215~250 nm的高空间频率条纹结构,还形成了平行于激光偏振方向且周期约为入射激光波长八分之一的高空间频率条纹结构。利用表面等离子体理论、二次谐波及Sipe理论对各种周期条纹结构的形成机理进行分析,发现周期条纹结构的形成与钛表面氧化层有密切的关系。  相似文献   

18.
Hollow-core waveguides with a periodic (photonic-crystal) cladding are shown to allow efficient temporal compression of high-intensity ultrashort laser pulses and formation of megawatt soliton-like features in the regime of robust isolated guided modes. We numerically analyze the temporal envelope evolution and spectral transformation of the light field in air-guided modes of gas-filled hollow coaxial periodic Bragg waveguides. Based on this analysis, we define optimal compression regimes, permitting high compression ratios (of about six) and high compression efficiencies (up to 73%) to be achieved for microjoule laser pulses with an initial pulse length of 80–400 fs.  相似文献   

19.
We study experimentally the behavior of the spectrum shape and Stokes frequency shift of stimulated Brillouin scattering (SRS)-compressed radiation within a broad range of incident-laser-pulse intensities from the threshold up to eight times the threshold values. We show that, at pulse compression of reflected radiation to subnanosecond durations (smaller than inverse spontaneous line widths), its spectrum monotonously shifts with increase in the exciting light intensity such that its Stokes shift decreases. At intensities increasing four times the threshold, the spectrum splits and acquires a twohumped shape, which is explained by the phase modulation near the SBS resonance. We construct an analytical model of self-phase modulation in SBS compression, describing the spectral splitting and chirping formation.  相似文献   

20.
The simultaneous generation of the 2nd and 3rd harmonics of a frequency-chirped pulse in a quadratically nonlinear medium encompassing a quasi-phase-matched grating with linearly varying inverse domain size has been numerically studied. The efficient pulse compression and energy conversion have been analyzed taking into account the group velocity mismatch and dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号