首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Despite attracting tremendous interest for well over a century, the field of furan syntheses is continuously and rapidly developing. This brief overview highlights recent progress in the syntheses of polysubstituted furans primarily guided by substitution pattern. Accordingly, methods are categorized as providing access to either di-, tri- or tetrasubstituted furans.  相似文献   

3.
4.
We report recent advances in the field of droplet-based microfluidics. Specifically, we highlight the unique features of such platforms for high-throughput experimentation; describe functional components that afford complex analytical processing and report on applications in synthesis, high-throughput screening, cell biology and synthetic and systems biology. Issues including the integration of high-information content detection methods, long term droplet stability and opportunities for large scale and intelligent biological experimentation are also discussed.  相似文献   

5.
6.
The design, synthesis and cation binding ability of azacalix[3]arene are summarized. Recent developments on its anion complexations and molecular devices are also added for better understanding.  相似文献   

7.
In a previous review of biological and bioinspired silica formation (S. V. Patwardhan et al., Chem. Commun., 2005, 1113 [ref. 1]), we have identified and discussed the roles that organic molecules (additives) play in silica formation in vitro. Tremendous progress has been made in this field since and this review attempts to capture, with selected examples from the literature, the key advances in synthesising and controlling properties of silica-based materials using bioinspired approaches, i.e. conditions of near-neutral pH, all aqueous environments and room temperature. One important reason to investigate biosilicifying systems is to be able to develop novel materials and/or technologies suitable for a wide range of applications. Therefore, this review will also focus on applications arising from research on biological and bioinspired silica. A range of applications such as in the areas of sensors, coatings, hybrid materials, catalysis and biocatalysis and drug delivery have started appearing. Furthermore, scale-up of this technology suitable for large-scale manufacturing has proven the potential of biologically inspired synthesis.  相似文献   

8.
The concept of multi-commutation in flow analysis is revisited, and emphasis is given to recent methodological and applicative achievements. Multi-commutation is compatible with different flow patterns (unsegmented, segmented, pulsed, tandem) and amenable to concentration-oriented feedback mechanisms. Its exploitation has led to significant attainments mainly in relation to versatility of the flow system. Characteristics and potentialities of the multi-commuted flow systems are discussed, and guidelines for assisting methodological implementation are given.The number of applications has experienced remarkable increase during last years; therefore, the applicative part of this review is focused on the recent noteworthy applications, mainly in relation to environmental, agronomical, pharmaceutical, biological, food and industrial samples.  相似文献   

9.
Since its development in the early 1970s, CEC has been studied quite extensively, but unfortunately its use is still mostly located at an academic level. Reasons for this are the limited availability of commercially available stationary phases (SPs) and columns, along with some practical limitations, such as column fragility, lack of column robustness and reproducibility. Nevertheless, CEC maintains a place among the separation techniques, probably because of its unique feature to combine two separation principles. Also in the field of chiral separations, CEC is often used as a separation technique and already showed its potential for this kind of analyses. This overview will focus on the recent applications, i.e. between 2006 and 2010, in enantioselective analysis by means of CEC. For the selected applications, the used SPs (chiral selectors) and their potential for future method development or screening purposes will be evaluated and critically discussed.  相似文献   

10.
Fang  Yuanxing  Zheng  Yun  Fang  Tao  Chen  Yong  Zhu  Yaodong  Liang  Qing  Sheng  Hua  Li  Zhaosheng  Chen  Chuncheng  Wang  Xinchen 《中国科学:化学(英文版)》2020,63(2):149-181
Photocatalysis,which is the catalyzation of redox reactions via the use of energy obtained from light sources,is a topic that has garnered a lot of attention in recent years as a means of addressing the environmental and economic issues plaguing society today.Of particular interest are photosynthesis can potentially mimic a variety of vital reactions,many of which hold the key to develop sustainable energy economy.In light of this,many of the technological and procedural advancements that have recently occurred in the field are discussed in this review,namely those linked to:(1)photocatalysts made from metal oxides,nitride,and sulfides;(2)photocatalysis via polymeric carbon nitride(PCN);and(3)general advances and mechanistic insights related to TiO2-based catalysts.The challenges and opportunities that have arisen over the past few years are discussed in detail.Basic concepts and experimental procedures which could be useful for eventually overcoming the problems associated with photocatalysis are presented herein.  相似文献   

11.
Novel single-step protocols for intramolecular oxidative cyclization of unsaturated hydroxamic acids proceeding by the carbonyl nitroso ene reaction were reported. The reaction can be viewed as a formal intramolecular allylic C–H amination. Simple, mild catalytic system based either on CuCl–O2 in THF or FeCl3–H2O2 in 2-propanol do not adversely affect the transient nitroso species and allow the nitroso ene reaction to take place.  相似文献   

12.
13.
14.
The purpose of this very short review is obviously not to give an extensive image of the activities carried out in France these last years in various domains related to inorganic fluorine chemistry. At the turn of the century, it will rather focus on a few examples obtained in French research groups, mostly this last decade, in the fields of the synthesis and discovery of some outstanding chemical and physical properties of inorganic fluorinated materials.  相似文献   

15.
To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started working on many new concepts that can help to assimilate knowledge-based structural diversities more efficiently than ever before. Emulating the basic principles followed by Nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create ‘nature-like’ and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature’s molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of peptidomimetic studies. Advances made in the area of combinatorial chemistry can provide the necessary technological support for rapid compilations of sugar amino acidbased libraries exploiting the diversities of their carbohydrate frameworks and well-developed solid-phase peptide synthesis methods. This perspective article chronicles some of the recent applications of various sugar amino acids, furan amino acids, pyrrole amino acids etc. and many other related building blocks in wide-ranging peptidomimetic studies  相似文献   

16.
New materials, namely high-k (high-permittivity) dielectrics to replace SiO(2), Cu to replace Al, and barrier materials for Cu, are revolutionizing modern integrated circuits. These materials must be deposited as very thin films on structured surfaces. The self-limiting growth mechanism characteristic to atomic layer deposition (ALD) facilitates the control of film thickness at the atomic level and allows deposition on large and complex surfaces. These features make ALD a very promising technique for future integrated circuits. Recent ALD research has mainly focused on materials required in microelectronics. Chemistry, in particular the selection of suitable precursor combinations, is the key issue in ALD; many interesting results have been obtained by smart chemistry. ALD is also likely to find applications in other areas, such as magnetic recording heads, optics, demanding protective coatings, and micro-electromechanical systems, provided that cost-effective processes can be found for the materials required.  相似文献   

17.
Cui W  Rohrs HW  Gross ML 《The Analyst》2011,136(19):3854-3864
Top-down mass spectrometry is an emerging approach for the analysis of intact proteins. The term was coined as a contrast with the better-established, bottom-up strategy for analysis of peptide fragments derived from digestion, either enzymatically or chemically, of intact proteins. Although the term top-down originates from proteomics, it can also be applied to mass spectrometric analysis of intact large biomolecules that are constituents of protein assemblies or complexes. Traditionally, mass spectrometry has usually started with intact molecules, and in this regard, top-down approaches reflect the spirit of mass spectrometry. This article provides an overview of the methodologies in top-down mass spectrometry and then reviews applications covering protein posttranslational modifications, protein biophysics, DNAs/RNAs, and protein assemblies. Finally, challenges and future directions are discussed.  相似文献   

18.
19.
20.
Isoplethal phase study methods, during which temperature is varied at constant composition, have seen little change during the last few years. However, isothermal methods (in which composition is varied at constant temperature) have undergone significant development. The deuterium-NMR variant of the classic isothermal analytic method has grown in importance. Also, more and better use has been made of qualitative isothermal swelling methods (‘penetration experiments’) to supplement other data. The quantitative Diffusive Interfacial Transport (DIT) method, first reported in 1987, has been much improved by replacing interferometry, as the basis for analysis, with the determination of water by NIR microspectroscopy. The resulting DIT-NIR method appears to be very general, and should see broad application in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号