首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
付朝江 《应用力学学报》2012,29(4):475-480,490
采用蒙特卡罗模拟(MCS)和加权积分法对二维问题进行随机有限元分析。尽管MCS方法对任何有确定解的问题都具有求解精度高的优点,但由于求解所需的计算量巨大使其应用受到限制。利用并行求解技术可有效地处理这种密集型计算问题。基于有限元分裂对接法(FETI)的并行特性并利用预处理共轭梯度法(PCG)的求解高效性,结合整体子区域实现(GSI-PCG)和FETI法,提出二级求解算法,并在工作站机群上实现了数值算例。算例计算结果表明本文GSI(PCG)-FETI算法具有较高的并行加速比和并行效率,具有良好的性能,可有效地进行二维问题的随机有限元分析。  相似文献   

2.
基于MPI标准定义的消息传递接口实现了显式动力学有限元程序的并行计算.通过基于Hilbert空间填充曲线的区域分解算法,实现各区域的独立运算和区域之间共享数据的相互通信.利用程序对水下爆炸自由场中的冲击波传播规律进行了数值模拟,并通过对不同进程数下的并行加速比进行测试,验证了程序的并行效率.  相似文献   

3.
An implicit enriched finite element algorithm is proposed to simulate heat transfer involving isothermal phase changes. This technique is based on a mixed variational formulation discretized by means of an enriched finite element approximation of the enthalpy in space. The interface is implicitly described without coupling with an interface-capturing technique. The time integration is carried out with an implicit (backward) Euler algorithm in time. Two examples in 1D and 2D clearly evidence the efficiency of the method developed.  相似文献   

4.
This paper presents a real time finite element method (TFEM) which unifies discretization techniques both in space domain and time domain and leads to some new possibilities of direct integral schemes. It is proved that some conventional schemes such as central difference and Newmark scheme are only special cases of linear element. The problem of the matching between the division of space mesh and the choice of time step length is also discussed.  相似文献   

5.
An efficient semi-implicit finite element model is proposed for the simulation of three-dimensional flows in stratified seas. The body of water is divided into a number of layers and the two horizontal momentum equations for each layer of water are first integrated vertically. Nine-node Lagrangian quadratic isoparametric elements are employed for spatial discretization in the horizontal domain. The time derivatives are approximated using a second-order-accurate semi-implicit time-stepping scheme. The distinguishing feature of the proposed numerical scheme is that only nodal values on the same vertical line are coupled. Two test cases for which analytic solutions are available are employed to test the proposed scheme. The test results show that the scheme is efficient and stable. A numerical experiment is also included to compare the proposed scheme with a finite difference scheme.  相似文献   

6.
This paper presents the development of the three- dimensional prolonged adaptive finite element equation solver for the Navier–Stokes equations. The finite element used is the tetrahedron with quadratic approximation of the velocities and linear approximation of the pressure. The equation system is formulated in the basic variables. The grid is adapted to the solution by the element Reynolds number. An element in the grid is refined when the Reynolds number of the element exceeds a preset limit. The global Reynolds number in the investigation is increased by scaling the solution for a lower Reynolds number. The grid is refined according to the scaled solution and the prolonged solution for the lower Reynolds number constitutes the start vector for the higher Reynolds number. Since the Reynolds number is the ratio of convection to diffusion, the grid refinements act as linearization and symmetrization of the equation system. The linear equation system of the Newton formulation is solved by CGSTAB with coupled node fill-in preconditioner. The test problem considered is the three-dimensional driven cavity flow. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds number is presented. The idea of the upwind technique is based on the choice of upwind and downwind points. This scheme can approximate the convection term to third-order accuracy when these points are located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the latter problem.  相似文献   

8.
A time-accurate least-squares finite element method is used to simulate three-dimensional flows in a cubic cavity with a uniform moving top. The time- accurate solutions are obtained by the Crank-Nicolson method for time integration and Newton linearization for the convective terms with extensive linearization steps. A matrix-free algorithm of the Jacobi conjugate gradient method is used to solve the symmetric, positive definite linear system of equations. To show that the least-squares finite element method with the Jacobi conjugate gradient technique has promising potential to provide implicit, fully coupled and time-accurate solutions to large-scale three-dimensional fluid flows, we present results for three-dimensional lid-driven flows in a cubic cavity for Reynolds numbers up to 3200.  相似文献   

9.
A new Galerkin finite element method for the solution of the Navier–Stokes equations in enclosures containing internal parts which may be moving is presented. Dubbed the virtual finite element method, it is based upon optimization techniques and belongs to the class of fictitious domain methods. Only one volumetric mesh representing the enclosure without its internal parts needs to be generated. These are rather discretized using control points on which kinematic constraints are enforced and introduced into the mathematical formulation by means of Lagrange multipliers. Consequently, the meshing of the computational domain is much easier than with classical finite element approaches. First, the methodology will be presented in detail. It will then be validated in the case of the two-dimensional Couette cylinder problem for which an analytical solution is available. Finally, the three-dimensional fluid flow inside a mechanically agitated vessel will be investigated. The accuracy of the numerical results will be assessed through a comparison with experimental data and results obtained with a standard finite element method. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
This paper establishes a non-linear finite element model (NFEM) of L4-L5 lumbar spinal segment with accurate three-dimensional solid ligaments and intervertebral disc. For the purpose, the intervertebral disc and surrounding ligaments are modeled with four-nodal three-dimensional tetrahedral elements with hyper-elastic material properties. Pure moment of 10 N·m without preload is applied to the upper vertebral body under the loading conditions of lateral bending, backward extension, torsion, and forward flexion, respectively. The simulate relationship curves between generalized forces and generalized displacement of the NFEM are compared with the in vitro experimental result curves to verify NFEM. The verified results show that: (1) The range of simulated motion is a good agreement with the in vitro experimental data; (2) The NFEM can more effectively reflect the actual mechanical properties than the FE model using cable and spring elements ligaments; (3) The NFEM can be used as the basis for further research on lumbar degenerative diseases.  相似文献   

11.
Computation of vertical velocity within the confines of a three-dimensional, finite element model is a difficult but important task. This paper examines four approaches to the solution of the overdetermined system of equations arising when the first-order continuity equation is solved in conjunction with two boundary conditions. The traditional (TRAD) method neglects one boundary condition, solving the continuity equation with the remaining boundary condition. The vertical derivative of continuity (VDC) method involves solution of the second-order equation obtained by differentiation of the continuity equation with respect to the vertical co-ordinate. The least squares (LS) method minimizes the residuals of the continuity equation (in discrete form) and the two boundary conditions. The adjoint (ADJ) method minimizes the residuals of the continuity equation (in continuous form) and the two boundary conditions. Two domains are considered: a quarter-annular harbour and the southwest coast of Vancouver Island. Results indicate that the highest-quality solution is obtained with both LS and ADJ. Furthermore, ADJ requires less CPU and memory than LS. Therefore the optimal method for computation of vertical velocity in a three-dimensional finite element model is the adjoint (ADJ) method. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
构造了一种3节点三角形膜单元,以适用于平面薄膜横向振动的有限元分析.在给出单元形函数的基础上,根据最小势能原理建立了薄膜自由振动方程,并推导了单元刚度矩阵和单元质量矩阵.研究结果表明,单元刚度矩阵和单元质量矩阵形式简单,且自由度少;通过两个典型算例,证明3节点三角形膜单元的计算结果非常接近理论解,同时可以达到很高的精度...  相似文献   

13.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

14.
Displacement-based finite element method formulations are coupled with stress-based photoelasticity analysis. As the stress field is discontinuous at the interelement boundaries, the introduced smoothing procedure enables the generation of high-quality digital images acceptable for hybird experimental-numerical techniques. The proposed methods are applicable for the analysis of static and dynamic results of experimental photoelasticity.  相似文献   

15.
A type of 3 node triangular element is constructed by the Quasi-conforming method, which may be used to solve the equation of a type of inverse problem of wave propagation after Laplace transformation ΔuA 2 u=0. The strains in the element are approximated by an exponential function and the string-net function between neighbouring elements is approximated by one dimensional general solution of the equation. Furthermore the strain field satisfies the equation, and therefore in the derivation of the element formulation, no shape function is needed. In this sense, it is a kind of hybrid element. Compared with the ordinary linear triangular element, the new one features higher precision with coarse meshes. Some numerical tests are presented. The project is supported by the National Natural Science Foundation of China.  相似文献   

16.
The passage of planar shocks in a dusty gas was investigated to note effects due to particle loading and initial shock Mach number. Two-phase flow equations have been added to a conservative, monotonic flow solver to allow study of compressible particle and droplet flows, which are of importance for shock propagation in two-phase flows and spray propulsion systems. The formulation developed herein employed a conservative Eulerian treatment for the gas and particle phases. The computations were performed using the finite element method-flux corrected transport (FEM-FCT) scheme, which has shown excellent predictive capability of various compressible flows which include both strong and weak shocks. The flux limiting technique was modified to provide monotonic particle velocity fields to increase the scheme's computational stability. Adaptive unstructured methodology based on adapting to high gradients of both the fluid and particle densities was used in conjunction with the conservative shock-capturing scheme to adequately resolve strong flowfield gradients. The shock attenuation of this scheme was then compared with previous experimental and numerical results and was found to yield robust predictions. Various interphase coupling terms were also considered to note their effect on the shock attenuation.This article was processed using Springer-Verlag tex Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

17.
By applying the continuous finite element methods of ordinary differential equations,the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems,and they both keep energy conservative.The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems.The numerical results are in agree- ment with theory.  相似文献   

18.
The boundary-type finite element method has been investigated and applied to the Helmholz and mild-slope equations. Four types of interpolation function are examined based on trigonometric function series. Three-node triangular, four-node quadrilateral, six-node triangular and eight-node quadrilateral elements are tested; these are all non-conforming elements. Three types of numerical example show that the three-node triangular and four-node quadrilateral elements are useful for practical analysis.  相似文献   

19.
A new reinforced concrete model, in which the reinforcement steel is assumed as smeared / layered in concrete, is established and installed into a currently used finite element code for nonlinear analysis. It performs the nonlinear behaviors of both concrete and the reinforcement steel. The results of examples are in good agreement with the experimental data.  相似文献   

20.
A parallel solver based on domain decomposition is presented for the solution of large algebraic systems arising in the finite element discretization of mechanical problems. It is hybrid in the sense that it combines a direct factorization of the local subdomain problems with an iterative treatment of the interface system by a parallel GMRES algorithm. An important feature of the proposed solver is the use of a set of Lagrange multipliers to enforce continuity of the finite element unknowns at the interface. A projection step and a preconditioner are proposed to control the conditioning of the interface matrix. The decomposition of the finite element mesh is formulated as a graph partitioning problem. A two-step approach is used where an initial decomposition is optimized by non-deterministic heuristics to increase the quality of the decomposition. Parallel simulations of a Navier–Stokes flow problem carried out on a Convex Exemplar SPP system with 16 processors show that the use of optimized decompositions and the preconditioning step are keys to obtaining high parallel efficiencies. Typical parallel efficiencies range above 80%. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号