首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A gravitational interaction of a scalar field with conformal coupling \( n\frac{R}{6}{\upvarphi}^2 \) (n = const) is considered within the framework of the affine-metric theory of gravitation, with the interaction with torsion and nonmetricity taken into account. It is shown that for different values of the constant n different forms of nonlinearities are induced in the scalar field and, in particular, for n = –1 a nonlinearity corresponding to the potential of the axion field is induced. Possible astrophysical consequences of such an effect are considered.  相似文献   

3.
We study a solution of the Einstein-Gauss-Bonnet theory coupled to a Maxwell field in five dimensions, whose euclidean continuation gives rise to an instanton describing black hole pair production. We also discuss the dual theory with a 3-form field coupled to gravity.  相似文献   

4.
5.
We consider a Gaussian Beam (GB) resonant system for high frequency gravitational waves (HFGWs) detection. At present, we find the optimal signal strength in theory through setting the magnetic component of GB in a standard gaussian form. Under the synchro-resonance condition, we study the signal strength (i.e., transverse perturbative photon fluxes) from the relic HFGWs (predicted by ordinary inflationary model) and the braneworld HFGWs (from braneworld scenarios). Both of them would generate potentially detectable transverse perturbative photon fluxes (PPFs). Furthermore we find optimal system parameters and the relationship between frequency and effective width of energy fluxes accumulation.  相似文献   

6.
7.
In this paper we calculate some effective cross-sections of leptons on the basis of S-matrix constructed in 8-dimensional united space [1]. The Lagrangian is chosen, within the framework of the 0 (71) group classification of elementary particles. Electromagnetic interaction does not change the internal structure of the participating particles. The results obtained agree well with experiments.  相似文献   

8.
A classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic interaction of composite particles is proposed and the quantum formalism is constructed. This gauge model containing a Chern–Simons U(1) field and the electromagnetic U(1) field can be coupled to both a bosonic or a fermionic matter field. We explicitly consider the second case, a composite fermion system in the presence of an electromagnetic field, and we carry out the canonical quantization by the Dirac method. The path integral approach is developed and the Feynman rules are established. A simplified model is considered. As an alternative path integral method, the BRST formalism for this gauge model is also treated.  相似文献   

9.
10.
Based on the approximation of sudden perturbations, the excitation and ionization of an atom in its interaction with an ultrashort electromagnetic field pulse are examined. The probabilities of excitation and ionization are obtained together with the spectra and cross sections of pulse re-emission by the atom.  相似文献   

11.
U. Kasper 《Annalen der Physik》1978,490(3):233-240
We point out that the gravitational field taken by itself cannot be considered as a gauge field. Only an affinity and not a metric can serve as a gauge field. Originally, metric and affinity are completely independent of each other. This fact allows in a natural way to formulate a restricted principle of relativity, according to which only fermion fields may show that there exist a priori distinguished frames of reference. Furthermore, we can couple the gravitational field to boson and fermion fields such that the flat metric or tetrads orthonormalized with respect to this flat metric appearing in the special relativistic matter Lagrangian, are replaced by a Riemannian metric and tetrads orthonormalized with respect to this metric (principle of most minimal gravitational coupling). This coupling principle is a strong restriction on the existence of independent boson fields. Only scalar and vector fields and their different pseudoquantities are possible as independent fields. Boson fields of higher rank are to be considered as fusions of these (pseudo)scalar and (pseudo)vector fields. Theire field equations follow from those of the (pseudo)scalar and (pseudo)vector fields.  相似文献   

12.
A classical nonrelativistic U(1)×U(1) gauge field model that describes the topologically massive electromagnetic interaction of composite particles in (2+1) dimensions is proposed. The model, generalization of a previously postulated one, contains a Chern-Simons U(1) field and the topologically massive electromagnetic U(1) field, and it uses both a composite boson system or a composite fermion one. The second case is considered explicitly. By using the Dirac Hamiltonian method for constrained systems, the canonical quantization is carried out. By means of the Faddeev-Senjanovic formalism, the path integral quantization is developed. Consequently, the Feynman rules are established and the diagrammatic structure is treated. The application of the Becchi-Rouet-Stora-Tyutin algorithm is discussed. The present and previous models are compared.  相似文献   

13.
By generalizing a model previously proposed, a classical nonrelativistic U(1)×U(1) gauge field model for the electromagnetic interaction of composite particles in (2+1) dimensions is constructed. The model contains a Chern–Simons U(1) field and the electromagnetic U(1) field, and it describes both a composite boson system or a composite fermion one. The second case is considered explicitly. The model includes a topological mass term for the electromagnetic field and interaction terms between the gauge fields. By following the Dirac Hamiltonian formalism for constrained systems, the canonical quantization for the model is realized. By developing the path integral quantization method through the Faddeev–Senjanovic algorithm, the Feynman rules of the model are established and its diagrammatic structure is discussed. The Becchi–Rouet–Stora–Tyutin formalism is applied to the model. The obtained results are compared with the ones corresponding to the previous model.  相似文献   

14.
Einstein's field equations with C and A both varying with time are considered in the presence of a perfect fluid for five-dimensional cosmological model in a way which conserves the energy momentum tensor of the matter content. Several sets of explicit solutions in the five-dimensional Kaluza-Klein type cosmological models with variable G and A are obtained. The diminishment of extra dimension with the evolution of the universe for the five-dimensional model is exhibited. The physical properties of the models are examined.  相似文献   

15.
By appropriately choosing additional dimensions of space-time, the mass spectrum of mesons is obtained, and the calculated results agree with the experimental data.  相似文献   

16.
In 1885, during initial discussions of J. C. Maxwell's celebrated thermodynamic demon, Whiting (1) observed that the demon-like velocity selection of molecules can occur in a gravitationally bound gas. Recently, a gravitational Maxwell demon has been proposed which makes use of this observation [D. P. Sheehan, J. Glick, and J. D. Means, Found. Phys. 30, 1227 (2000)]. Here we report on numerical simulations that detail its microscopic phase space structure. Results verify the previously hypothesized mechanism of its paradoxical behavior. This system appears to be the only example of a fully classical mechanical Maxwell demon that has not been resolved in favor of the second law of thermodynamics.  相似文献   

17.
The interaction between a very-high-frequency gravitational wave (VHFGW) and an electromagnetic wave (EMW) in a rectangular waveguide is discussed in the weak field limit. The background EMW is assumed to be initially in the TE10 mode along the waveguide. It is then shown that a VHFGW, having the same frequency and direction of propagation of the EMW, induces through the waveguide a TE mode with a frequency doubled when compared to the original EMW frequency. In that respect, the GW acts similar to a non-linear medium, giving rise to a Second Harmonic Generation (SHG) effect.  相似文献   

18.
This paper is a continuation of the article “The Isotopic Field-Charge Assumption Applied to the Electromagnetic Interaction”. It continues the discussion and consequences of the extended Dirac equation in the presence of isotopic mass and electric charges, and a kinetic gauge field. In compliance with the author’s previous papers (Darvas in Concepts Phys. VI(1):3–16, 2009; Int. J. Theor. Phys. 50(10):2961–2991, 2011; Int. J. Theor. Phys., 2013), there appears a second conserved Noether current in the interaction between two electric charges in the presence of isotopic electric charges and a kinetic field. This second conserved current involves the conservation of the isotopic electric charge spin, and that predicts the existence of quanta of the kinetic field (dions associated with the photons). It is concluded that with the discussed conditions, the electromagnetic interaction should be mediated by photons and their dion partners together. The conclusions give physical meaning, among others, to the electric moment and to a virtual coupling spin.  相似文献   

19.
The potential of a static electric charge located in a Schwarzschild gravitational field is given by Linet. The expressions for the field lines derived from this potential are calculated by numerical integration and drawn for different locations of the static charge in the gravitational field. The field lines calculated for a charge located very close to the central mass can be compared to those calculated by Hanni–Ruffini. Maxwell equations are used to analyze the dynamics of the falling electric field in a gravitational field.  相似文献   

20.
We examine the definition S=ln as a candidate function for gravitational entropy. We calculate its behavior for gravitational and density perturbations in closed, open and flat cosmological models and find that in all cases it increases monotonically. We are also able to calculate the entropy density of gravitational radiation produced by inflation. We compare the results with the behavior of the Weyl-tensor squared. Applying the formalism to black holes has proved more problematical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号