首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文模拟研究了氙气中X射线加热产生辐射激波的发光特性.辐射激波采用Zinn模型计算,并在模型中输入氙气的辐射不透明度和状态方程参数.研究发现,辐射激波伴随着丰富的光学演化过程,激波对外辐射强度表现出两个明显的亮度峰值和一个亮度极小值,辐射光谱也经常偏离黑体辐射光谱.对氙气不同位置光学特性的分析可知,激波和内部高温区的辐...  相似文献   

2.
3.
We present a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using targets filled with xenon gas at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured shock quantities (electronic density and propagation velocity) are shown to be in good agreement with theory and numerical simulations.  相似文献   

4.
5.
王瑞荣  王伟  方智恒  安红海  贾果  谢志勇  孟祥富 《物理学报》2013,62(12):125202-125202
基于稠密物质辐射不透明度的理论计算目前有相当大的难度, 而稠密物质高精度不透明度数据又对聚变研究中的理论设计和模拟以及状态诊断等方面非常有用. 在"神光II"激光装置上建立一发次中能同时测量背光谱、 样品自发谱和吸收谱的大谱窗高分辨椭圆弯晶测谱系统, 并利用一维辐射流体力学程序MULTI仿真冲击波碰撞压缩样品的过程.在测量中, 用点投影背光法、激光烧蚀冲击波碰撞压缩产生稠密铝(Al)样品, 激光镱等离子体3d–4f 跃迁辐射为短脉冲背光提供样品吸收谱时空分辨诊断, 在一发次打靶中得到了背光谱、样品自发谱和X射线吸收精细结构谱, 以及稠密Al辐射吸收谱向长波偏移.实验结果给出了诊断能谱区稠密Al相对透射率分布和吸收谱偏移量. 这些工作都有益于丰富不透明度这一基础研究领域和进一步开拓许多重要应用. 关键词: 冲击波压缩等离子体 X射线吸收谱 线移 精细结构  相似文献   

6.
7.
Shock waves generated by a laser-induced plasma were investigated using a pump-and-probe technique. Both 7-ns and 40-ps laser pulses at 1.06 m were employed to initiate breakdown in water. Two He-Ne laser beams were used as a velocity probe, allowing the accurate measurement of the shock velocity around the plasma. The maximum shock pressure was determined from the measured shock velocities, the jump condition and the equation of state for water. The conservation of the total momentum of the shock front was used to derive expressions for the shock velocity, particle velocity and shock pressure vs. the distance (r) from the center of the plasma. For a shock wave of spherical symmetry, the shock pressure is proportional to 1/r 2. Our work shows that the expanding plasma initially induces a shock wave; the shock wave dissipates rapidly becoming an acoustic wave within 300–500 m.  相似文献   

8.
We have examined the evolution of cylindrically symmetric blast waves produced by the deposition of femtosecond laser pulses in gas jets. In high- Z gases radiative effects become important. We observe the production of an ionization precursor ahead of the shock front and deceleration parameters below the adiabatic value of 1/2 (for a cylinder), an effect expected when the blast wave loses energy by radiative cooling. Despite significant radiative cooling, the blast waves do not appear to develop thin shell instabilities expected for strongly radiative waves. This is believed to be due to the stabilizing effect of a relatively thick blast wave shell resulting in part from electron thermal conduction effects.  相似文献   

9.
We report the experimental observation of a light polarization rotation in vacuum in the presence of a transverse magnetic field. Assuming that data distribution is Gaussian, the average measured rotation is (3.9 +/- 0.5) x 10(-12) rad/pass, at 5 T with 44 000 passes through a 1 m long magnet, with lambda = 1064 nm. The relevance of this result in terms of the existence of a light, neutral, spin-zero particle is discussed.  相似文献   

10.
The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 1014 W/cm2. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2–3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.  相似文献   

11.
12.
The intense acoustic wave generated at the focus of an extracorporeal shock wave lithotripter is modeled as the impulse response of a parallel RLC circuit. The shock wave consists of a zero rise time positive spike that falls to 0 at 1 microsecond followed by a negative pressure component 6 microseconds long with amplitudes scaled to +1000 and -160 bars, P+ and P-, respectively. This pressure wave drives the Gilmore-Akulichev formulation for bubble dynamics; the zero-order effect of gas diffusion on bubble response is included. The negative pressure component of a 1000-bar shock wave will cause a preexisting bubble in the 1- to 10-microns range to expand to over 100 times its initial size, R0, for 250 microseconds, with a peak radius of approximately 1400 microns, then collapse very violently, emitting far UV or soft x-ray photons (black body). Gas diffusion does not appreciably mitigate the amplitude of the pressure wave radiated at the primary collapse, but does significantly reduce the collapse temperature. Diffusion also increases the bubble radius from R0 up to 40 microns and extends the duration of ringing following the primary collapse, assuming that the bubble does not break up or shed microbubbles. Results are sensitive to P+/P- and to the duration of the negative pressure cycle but not to rise time.  相似文献   

13.
A theory is proposed of the self-sustaining oscillations of a weak shock on an airfoil in steady, transonic flow. The interaction of the shock with the boundary layer on the airfoil produces displacement thickness fluctuations which convect downstream and generate sound by interaction with the trailing edge. A feedback loop is established when this sound impinges on the shock wave, resulting in the production of further fluctuations in the displacement thickness. The details are worked out for an idealized mean boundary layer velocity profile, but strong support for the basic hypotheses of the theory is provided by a comparison with recent experiments involving the generation of acoustic “tone bursts” by a supercritical airfoil section.  相似文献   

14.
为探索研究飞秒激光在材料中驱动冲击波的相关特性,采用激光脉冲频域干涉测试技术对脉冲宽度35 fs、脉冲能量0.7 mJ、功率密度1014 W/cm2量级的飞秒激光脉冲在200 nm厚铝膜中驱动冲击波的过程进行了实验测量。通过测量冲击波在铝膜中的渡越时间,获得激光脉冲在铝材料中驱动的冲击波平均速度约为6 km/s;通过对不同时刻铝膜自由面频域干涉场测量结果的分析,获得铝材料自由表面速度达1 km/s,根据平面冲击波的关系,推算其冲击压强达到9 GPa。  相似文献   

15.
We report on an experimental observation of optical wave chaos in a resonator consisting of three standard, high-reflectivity mirrors. The nonseparability of the wave equation necessary for chaos is introduced by violating the paraxial approximation. Until recently progress in optical wave chaos was hampered by the inherent difficulty in realizing suitable microscopic systems; now this novel, macroscopic approach offers complete and easy control and allows unprecedented study of optical wave chaos.  相似文献   

16.
17.
飞秒激光在铝膜中驱动冲击波的特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为探索研究飞秒激光在材料中驱动冲击波的相关特性,采用激光脉冲频域干涉测试技术对脉冲宽度35fs、脉冲能量0.7mJ、功率密度1014W/cm2量级的飞秒激光脉冲在200nm厚铝膜中驱动冲击波的过程进行了实验测量。通过测量冲击波在铝膜中的渡越时间,获得激光脉冲在铝材料中驱动的冲击波平均速度约为6km/s;通过对不同时刻铝膜自由面频域干涉场测量结果的分析,获得铝材料自由表面速度达1km/s,根据平面冲击波的关系,推算其冲击压强达到9GPa。  相似文献   

18.
The interaction of a pulsed TE-CO2-laser (10.6 μm wavelength, 7 μs pulse length, 0.7 J pulse energy, 107 W/cm2 power density, 100 kW mean power) with metals in air was investigated. Laser-supported absorption phenomena and material ablation processes are compared to those of conventional pulsed TEA-CO 2-lasers. Of interest were the time-dependent plasma formation and the evolution of the shock waves. To achieve a time resolution better than 10 ns, a pulsed dye laser was used as a light source for the shadow photography  相似文献   

19.
The processes of propagation of a shock wave generated by an antihail gun are analyzed. It is shown that a shock wave can reach an altitude of 100 km. The measurement results of the time dependence of variation in acoustic intensity and sound frequency for a vertically propagating shock wave are presented.  相似文献   

20.
Direct real-time visualization and measurement of laser-driven shock generation, propagation, and 2D focusing in a sample are demonstrated. A substantial increase of the pressure at the convergence of the cylindrical acoustic shock front is observed experimentally and simulated numerically. Single-shot acquisitions using a streak camera reveal that at the convergence of the shock wave in water the supersonic speed reaches Mach 6, corresponding to the multiple gigapascal pressure range ~30 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号