首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正> 《多柔体系统动力学》一书由吉林工业大学工程力学系陆佑方、王彬撰写,将于1994年由高等教育出版社出版.书中系统地阐述了多柔体系统动力学的建模理论、数值分析方法及其应用.全书共十七章,分为基础篇和专题篇两大部分.  相似文献   

2.
孙加亮  田强  胡海岩 《力学学报》2019,51(6):1565-1586
多柔体系统是由柔性部件和运动副组成的力学系统,在航空、航天、车辆、机械与兵器等众多工程领域具有广泛的应用前景, 其典型的代表包括柔性机械臂、直升机旋翼、卫星的可展开天线、太阳帆航天器等. 近年来,随着工程技术的发展,多柔体系统动力学问题日益突出,尤其是含变长度柔性部件的多柔体系统,不仅涉及其动力学 建模与计算,还涉及其动力学优化设计. 事实上,部件柔性对多柔体系统的动力学行为影响很大,直接影响到优化结果,因此需要发展基于多柔体系统动力学的优化设计方法. 本文首先阐述了多柔体系统动力学优化的研究背景及意义,简要回顾了多柔体系统动力学建模的3类方法:浮动坐标方法、几何 精确方法和绝对节点坐标方法,并介绍了含变长度柔性部件的多柔体系统动力学建模方法. 系统概述了多柔体系统动力学响应优化、动力学特性优化和动力学灵敏度分析3个方面的研究进展,并从尺寸优化、形状优化和 拓扑优化 3 个方面综述了多柔体系统部件优化的研究进展. 本文最后提出了在多柔体系统动力学优化研究中值得关注的若干问题.   相似文献   

3.
多柔体系统是由柔性部件和运动副组成的力学系统,在航空、航天、车辆、机械与兵器等众多工程领域具有广泛的应用前景,其典型的代表包括柔性机械臂、直升机旋翼、卫星的可展开天线、太阳帆航天器等.近年来,随着工程技术的发展,多柔体系统动力学问题日益突出,尤其是含变长度柔性部件的多柔体系统,不仅涉及其动力学建模与计算,还涉及其动力学优化设计.事实上,部件柔性对多柔体系统的动力学行为影响很大,直接影响到优化结果,因此需要发展基于多柔体系统动力学的优化设计方法.本文首先阐述了多柔体系统动力学优化的研究背景及意义,简要回顾了多柔体系统动力学建模的3类方法:浮动坐标方法、几何精确方法和绝对节点坐标方法,并介绍了含变长度柔性部件的多柔体系统动力学建模方法.系统概述了多柔体系统动力学响应优化、动力学特性优化和动力学灵敏度分析3个方面的研究进展,并从尺寸优化、形状优化和拓扑优化3个方面综述了多柔体系统部件优化的研究进展.本文最后提出了在多柔体系统动力学优化研究中值得关注的若干问题.  相似文献   

4.
多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结构力学所研究的几何非线性问题.本文基于李群局部标架(local frame of Lie group, LFLG),讨论如何发展一套新的多柔体系统动力学建模和计算方法体系,具体内容包括:基于局部标架的梁、板壳单元,适用于长时间历程计算的多柔体系统碰撞动力学积分算法,结合区域分解技术的大规模多柔体系统动力学并行求解器,以及若干验证性算例.上述基于李群局部标架的方法体系可在计算中消除刚体运动带来的几何非线性问题,使柔体系统的广义惯性力、广义弹性力及其雅可比矩阵满足刚体运动的不变性,使多柔体系统动力学与大变形结构力学相互统一,有望推动新一代多柔体系统动力学建模和计算软件的发展.  相似文献   

5.
刘铖  胡海岩 《力学学报》2021,53(1):213-233
多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结构力学所研究的几何非线性问题.本文基于李群局部标架(local frame of Lie group,...  相似文献   

6.
多柔体系统碰撞动力学研究综述   总被引:30,自引:3,他引:27  
刘才山  陈滨 《力学进展》2000,30(1):7-14
多柔体系统碰撞动力学研究具有重要的研究价值和工程实际意义,本文针对多柔体系统碰撞动力学研究中的几个基本问题进行了全面的分析和评述,其中包括多柔体系统动力学方程的描述、碰撞模型的建立、铰接间隙引起的碰撞问题、数值算法、实验研究、控制等几个方面,并根据目前的发展现状和研究中存在的问题,指出了今后多柔体系统动力学碰撞研究中的发展方向   相似文献   

7.
动力刚化与多体系统刚—柔耦合动力学   总被引:25,自引:2,他引:23  
首先指出当前柔性多体系统动力学的大量工程研究背景,在回顾柔性多体系统动力学研究进展后指出动力刚化的现象揭示了刚-柔耦合的零次建模方法的局限,认为进一步深入进行柔性多体系统刚-柔耦合动力学的研究是多体系统动力学研究的新阶段,文末提出了刚-柔耦合动力学的研究任务。  相似文献   

8.
刘延柱 《力学学报》2014,46(6):940-945
基于高斯最小拘束原理,以释放中的绳系卫星为背景,建立地球引力场内变长度大变形柔索联系的多体系统动力学模型. 利用基尔霍夫动力学比拟方法将柔索的变形转化为刚性截面沿中心线的转动,使包含刚性分体与变形体的刚柔耦合系统转化为由柔索的刚性截面与刚性分体组成的广义多刚体系统. 由于刚性截面的局部小变形沿弧坐标的积累不受限制,适合描述柔索的超大变形. 文中对此刚柔耦合多体系统导出其在地球引力场中的拘束函数,考虑各分体在空间中相对位置的几何约束条件,利用拉格朗日乘子构成以条件极值问题为特征的数学模型. 将高斯原理用于多体系统动力学的建模,其特点是以寻求函数极值的变分方法代替微分方程,通过数值计算直接得出运动规律. 其形式统一,不随系统拓扑结构的变化而改变,也无需区分树系统或非树系统.对于带控制的多体系统,动力学分析还可根据技术需要与系统的优化结合进行.   相似文献   

9.
基于高斯最小拘束原理,以释放中的绳系卫星为背景,建立地球引力场内变长度大变形柔索联系的多体系统动力学模型. 利用基尔霍夫动力学比拟方法将柔索的变形转化为刚性截面沿中心线的转动,使包含刚性分体与变形体的刚柔耦合系统转化为由柔索的刚性截面与刚性分体组成的广义多刚体系统. 由于刚性截面的局部小变形沿弧坐标的积累不受限制,适合描述柔索的超大变形. 文中对此刚柔耦合多体系统导出其在地球引力场中的拘束函数,考虑各分体在空间中相对位置的几何约束条件,利用拉格朗日乘子构成以条件极值问题为特征的数学模型. 将高斯原理用于多体系统动力学的建模,其特点是以寻求函数极值的变分方法代替微分方程,通过数值计算直接得出运动规律. 其形式统一,不随系统拓扑结构的变化而改变,也无需区分树系统或非树系统.对于带控制的多体系统,动力学分析还可根据技术需要与系统的优化结合进行.  相似文献   

10.
柔性多体系统刚-柔耦合动力学   总被引:21,自引:3,他引:21  
首先指出大量复杂系统动力学与控制性态分析与优化等工程问题对柔性多体系统动力学领域的进一步需求,在回顾柔性多体系统动力学研究的若干阶段与当前的研究现状后指出:柔性多体系统刚- 柔耦合动力学的研究是多体系统动力学的一个新的阶段.文末提出了刚- 柔耦合动力学的研究任务。   相似文献   

11.
具有刚-柔-液-控耦合的航天器动力学研究进展   总被引:4,自引:0,他引:4  
岳宝增  宋晓娟 《力学进展》2013,43(1):163-173
从现代复杂航天器姿态非线性动力学、液体燃料晃动动力学与控制问题、航天器刚-柔耦合系统动力学建模问题、航天器刚-液耦合动力学、航天器刚-柔-液-控耦合动力学、充液航天器实验问题等方面概述了近年来国内外在充液航天器多体耦合动力学相关领域的最新研究进展. 分别从液体燃料晃动动力学建模问题、航天器刚-柔-液-控耦合系统非线性理论和方法、计算机数值仿真及物理实验问题等方面展望了有待进一步加强的研究课题.  相似文献   

12.
人体肌肉骨骼系统简称肌骨系统, 包括骨骼、骨骼肌与关节连接, 其力学模型是典型的多柔体系统. 从多体动力学角度研究肌骨系统, 主要关注其在运动过程中的肌肉内力、关节力矩及产生的动力学影响, 属于动力学与生物力学的交叉融合. 肌骨系统的多体动力学模型已被广泛地应用于临床医学、竞技体育、军事训练、人机工程等诸多领域, 其仿真结果可为提高人体运动能力、降低关节载荷与能耗、避免运动损伤、加快康复进程等提供重要计算参考数据. 与此同时, 上述研究亦对肌骨动力学研究提出了许多新挑战. 本文综述了人体肌骨多柔体系统动力学相关研究进展, 包括骨骼肌功能解剖与生物力学建模、神经与肌肉控制理论、肌骨系统动力学问题与求解方法, 以及近年来肌骨多体动力学在步态分析、飞行员抗荷动作、口颌手术规划等领域的典型应用. 与工程领域的机械多体系统相比, 人体肌骨多体系统具有肌肉内力主动性与肌肉控制冗余性两大特征. 现有骨骼肌模型难以同时考虑肌肉的解剖结构、三维几何与肌力产生的生物化学机制. 已有大多数肌骨模型采用静态优化假设消除肌肉冗余性, 忽略了肌肉与肌腱内力平衡及兴奋收缩耦联机制. 此外, 目前仍缺乏实现肌骨模型个性化的无创在体测试手段. 未来, 人体肌骨多体动力学研究将会向更精确、智能、个性化的方向发展, 成为动力学与生物力学交叉的热点研究领域.   相似文献   

13.
多柔体系统的动力学方程通常是一组刚性微分方程,目前普遍采用的刚性微分方程数值解法主要通过数值阻尼滤除系统响应中的高频分量,其求解效率难以令人满意.为了降低多柔体系统动力学方程的刚性,从而可采用ODE45等常规微分方程求解器进行求解,研究了在建模过程中滤除高频振荡分量的方法.在以当前时刻为起点的短时间内对柔性体的应力进行均匀化,用均匀化后的应力计算柔性体的变形虚功率,由此得到的系统动力学方程的解中不含过高频率的弹性振动,并且可以通过调节均匀化时间区间的长度参数控制滤波的范围.数值算例表明:这种模型降噪方法的计算效率和精度均不低于刚性微分方程求解器,并且在刚性微分方程求解器失效的情况下模型降噪方法仍有良好的精度和效率.本文所提的模型降噪方法可成为求解多柔体系统动力学方程的新途径.  相似文献   

14.
多柔体系统数值分析的模型降噪方法   总被引:2,自引:0,他引:2  
齐朝晖  曹艳  王刚 《力学学报》2018,50(4):863-870
多柔体系统的动力学方程通常是一组刚性微分方程, 目前普遍采用的刚性微分方程数值解法主要通过数值阻尼滤除系统响应中的高频分量, 其求解效率难以令人满意. 为了降低多柔体系统动力学方程的刚性, 从而可采用ODE45等常规微分方程求解器进行求解, 研究了在建模过程中滤除高频振荡分量的方法. 在以当前时刻为起点的短时间内对柔性体的应力进行均匀化, 用均匀化后的应力计算柔性体的变形虚功率, 由此得到的系统动力学方程的解中不含过高频率的弹性振动, 并且可以通过调节均匀化时间区间的长度参数控制滤波的范围. 数值算例表明: 这种模型降噪方法的计算效率和精度均不低于刚性微分方程求解器, 并且在刚性微分方程求解器失效的情况下模型降噪方法仍有良好的精度和效率. 本文所提的模型降噪方法可成为求解多柔体系统动力学方程的新途径.   相似文献   

15.
刚体动力学的拟变分原理及其应用   总被引:1,自引:0,他引:1  
梁立孚  郭庆勇 《力学学报》2010,42(2):300-305
为了适应航天事业发展的需要,极有必要开展多柔体系统的理论分析.作为应用非保守系统的拟变分原理进行多柔体动力学的理论分析的组成部分,研究了刚体动力学的拟变分原理及其应用:建立了刚体动力学的拟变分原理,推导出刚体动力学的拟变分原理的拟驻值条件; 建立了刚体动力学的广义拟变分原理,说明了应用广义拟变分原理求得问题的解析解和数值解的途径; 最后,借助算例说明了应用变分方法来研究刚体动力学问题的优越性.   相似文献   

16.
王捷  刘锦阳 《应用力学学报》2012,29(5):501-507,624
本文研究了柔性多体系统刚-柔-热耦合动力学特性。以哈勃天文望远镜(HST)为研究对象,基于柔性多体系统动力学理论,考虑了柔性附件弹性变形引起的热辐射边界条件的变化,建立了中心刚体和太阳能毯柔性附件多体系统的刚-柔-热耦合的动力学方程。通过对热载荷作用下哈勃天文望远镜多体系统的数值仿真研究了热辐射角、阻尼系数、比热容、支撑梁、太阳能毯之间的轴向力等参数对于柔性附件热颤振的影响;并提出增加结构阻尼、减小支撑梁和太阳能毯之间的轴向力、选择阻尼系数和比热容均较大的支撑梁材料、采用柔度较大的主体桶材料等改善热颤振的措施。  相似文献   

17.
利用碰撞弹簧概念,结合多柔体系统动力学方法,建立了多体系附落碰撞的动力学模型。并通过求出响应,可详细描述碰撞过程。  相似文献   

18.
根据人体在荡秋千过程中的动作特点,分别建立了秋千系统的四刚体力学模型和三刚体-柔 索力学模型,应用多体系统动力学理论数值模拟了荡秋千的动力学过程,分析了人体上下屈 伸频率和初始相位对秋千摆荡幅度的影响,获得了一些具有重要价值的结论.  相似文献   

19.
平动弹性梁的刚-柔耦合动力学   总被引:3,自引:0,他引:3  
蒋丽忠  洪嘉振 《力学季刊》2002,23(4):450-454
本文建立了作大范围平动弹性梁的刚-柔耦合动力学控制方程。分析了大范围平动对弹性梁变形运动动力学性质的影响,发现了大范围平动与变形运动之间的耦合动力学与大范围转动与变形运动之间的耦合动力学存在显著的差异。大范围平动使弹性梁的刚度降低,同时使系统阻尼增加;而大范围转动使弹性梁的刚度增加,同时使系统产生了能量转换的陀螺效应。因此,柔性多体系统刚-柔耦合动力建模中必须包括大范围平动与柔性体变形运动之间的耦合动力学效应。  相似文献   

20.
复杂刚—柔混合机构的动力学分析方法   总被引:2,自引:0,他引:2  
于清  洪嘉振 《力学季刊》1998,19(1):15-21
本文应用柔性多体系统理论分析了复杂刚-柔混合机构的动力学问题,用单项递推组集方法建立了系统的动力学模型,用模态综合方法描述柔性的变形,对空间四连杆机构进行了动力这仿真。讨论了安装误差对系统动力学性态的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号