首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we briefly summarize the main conclusions of the Mössbauer analysis of [L2Fe2(-OH)3] (ClO4)2·2CH3OH·2H2O with L=N,N',N"-trimethyl-1,4,7-triazacyclononane, a novel dimeric iron compound, which possesses a central exchange-coupled delocalized-valence Fe(II/III) unit. The complete delocalization of the excess electron in the dimeric iron center is concluded from the indistinguishability of the two iron sites in Mössbauer spectroscopy. The magnetic Mössbauer spectra imply a system spinS t=9/2 for the dimer in its ground state. The values for hyperfine and spin-Hamiltonian parameters, obtained from simulations of the Mössbauer spectra, are =0.74 mms–1, E Q=–2.14 mms–1,A =–10.6 T,A =–13.5 T andD=1.8 cm–1. The system spinS t=9/2 is interpreted to be a consequence of double-exchange coupling.  相似文献   

2.
3.
Stress field and magnetic field annealed FINEMET ribbons were investigated by 57Fe Mössbauer spectroscopy, magnetic and XRD methods. The change in relative areas of the 2nd and 5th lines in the Mössbauer spectra indicated significant variation in magnetic anisotropy due to the different annealing. High velocity resolution Mössbauer spectroscopy was also used to control the model applied for the evaluation of Mössbauer spectra. A correlation was found between the permeability and the magnetic anisotropy of the annealed FINEMET samples. This can be applied to predict production parameters of FINEMET ribbons with more favorable soft magnetic properties for technological applications.  相似文献   

4.
5.
Room temperature 57Fe Mössbauer spectroscopy has been used to investigate the structural and oxidation state of Fe in tektites from different strewn fields. Spectra have been analyzed in terms of two quadrupole splitting distributions corresponding to Fe3?+? and Fe2?+?. All tektites show similar distribution of quadrupole splitting. Each distribution has one peak. The Fe2?+? sites show a narrow region of Mössbauer line shift (δ) and quadrupole splitting (ε), δ?= 1.02–1.10 mm/s and ε?= 0.85–1.00 mm/s relative to α-Fe. These values have been assigned to intermediate coordination between tetrahedral and octahedral. The Fe3?+? sites show wider regions of hyperfine parameters: δ?= 0.25–0.45 mm/s and ε?= 0.65–0.90 mm/s. The Fe3?+?/Fe2?+? ratio was found to be 0.05–0.15.  相似文献   

6.
Mössbauer spectra of LiNbO3: Fe(III)-monocrystals in external magnetic fields of 0.3–7T with various configurations of the -direction, c-axis of the crystal, and the magnetic field direction are interpreted by means of a spin Hamiltonian. A consistent set of hyperfine and crystal-field parameters could be least squares fitted for all spectra. Arguments that Fe(III) substitutes Nb(V) are given.Work partly performed in ICEx/UFMG, Depto. de Fisica, Belo Horizonte, Brasil  相似文献   

7.
Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter =?10-50 nm, length =?350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite (γ-Fe2 O 3) with a lattice constant of a =?10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.  相似文献   

8.
Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.  相似文献   

9.
10.
Mössbauer investigations between 4.5 and 300 K of iron minerals formed during the growth of the binary culture containing two anaerobic alkaliphilic bacteria-dissimilatory iron-reducing Geoalkalibacter ferrihydriticus (strain Z-0531) and organotrophic Anaerobacillus alkalilacustre (strain Z- 0521), have been carried out. Mannitol (2 g/l) as the sole substrate with amorphous Fe(III) hydroxide at final concentration 10 or 100 mM were added to the mineral medium. The formation of siderite and probable magnetite or a mixture of magnetite and maghemite were observed.  相似文献   

11.
Nitrosyl hemoglobin was prepared by bubbling fresh57Fe-enriched rat hemoglobin with NO. S- and X-band EPR spectra at 77 K are typical for anS=1/2 system with an anisotropicg-tensor and exhibit hyperfine interactions of14N with the electronic spin. Mössbauer spectra at 4.2 and 100 K consist of a superposition of spectra from high- and low-spin Fe(III), deoxygenated hemoglobin and a component corresponding toS=1/2,g=2, hyperfine constantsA xx /g n n =A yy /g n n =–19.6 T,A zz /g n n =6.8 T, quadrupole splitting E Q=1.5 mm s–1, isomer shiftI s=0.42 mm s–1 and linewidth 0.4 mm s–1. The spin-lattice relaxation rate at 100 K is <2×106 s–1.  相似文献   

12.
13.
Mössbauer spectroscopy was used to investigate the early aging stage of iron(III) hydroxide sols prepared by oxidation of Fe(CO)5 in ethanolic solution, followed by vacuum drying at room temperature. One sample was composed of amorphous particles, while two other samples were partially crystallized, either as a result of solvent change or of spontaneous aging. The main results of Mössbauer measurements in the 80–320 K temperature range are: (a) partially crystallized particles exhibit a strong, S-shaped temperature dependence of the quadrupole splitting, in contrast to a weak and linear variation for amorphous particles; (b) the recoilless fraction temperature dependence is affected by vibration of the particles as a whole, with an effective force constant which is smaller for crystallized particles than for amorphous ones. Furthermore, the former exhibit anf-factor discontinuity near 0°C, which is attributed to melting of a surface layer built up during the crystallization process.  相似文献   

14.
57Fe Mössbauer spectroscopy in conjunction with atomic absorption spectrometry and X-ray powder differaction analyses have been used to study the iron present in a montmorillonite prior to and after different successive stages of two deferration processes. Fe3+ ions occupy mainly octahedrical M(2) sites in the mineral structure; no impurities of iron oxides were detected. The quite efficient deferration by HCl refluxing produced a substantial alteration of lamellar structure of montmorillonite, whilst dithionite/citrate treatment did not induce severe structural changes but had low iron removal efficiency.  相似文献   

15.
57Fe Mössbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanová and Ko?ice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanová meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe3?+? ions corresponds probably to small superparamagnetic particles. The Ko?ice meteorite was found near the town of Ko?ice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Mössbauer parameters of the magnetic field corresponding to kamacite α-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe2?+? phases such as olivine and pyroxene and traces of a Fe3?+? phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.  相似文献   

16.
Ultramafic xenoliths of mantle origin occur in Hungarian Cretaceous lamprophyres. The aim of the present work was to determine the iron positions and their occupancy in phlogopites originated from ultramafic xenoliths by the help of Mössbauer spectroscopy. On the basis of the evaluation of the Mössbauer spectra Fe M1 2+ , Fe M2 2+ , Fe M2 3+ and Fe M1 3+ (or in some cases Fetet) octahedral and tetrahedral iron sites were identified in the samples. Quantitative analysis was performed for all of the iron sites. We have observed large differences between the Fe2+/Fe3+ ratio in samples originated from 120–150 km deepness, which phlogopites having been existed at different erosion circumstances. We have found a significantly higher Fe2+/Fe3+ ratio in phlogopites which had been solidified in 120–150 km depth from the surface of Earth 70–100 million years ago, than those had been crystallized in 60–80 km deepness.  相似文献   

17.
Steatite mineral rocks, soapstone, have been studied by X-ray diffraction, optical microscopic analysis (modal analysis), electron probe micro analysis and Mössbauer spectroscopy for characterization, mineral percentages and chemical composition. Mössbauer spectra show both, magnetic interactions corresponding to magnetite and doublets corresponding to talc. chlorite, dolomite and tremolite. The temperature dependence of the quadrupole splitting in dolomite has been explained in terms of crystal field interaction.  相似文献   

18.
Natural Wolframite, (Fe x Mn1?x )WO4 withx=0.95 to 0.41, obtained from seven different sites of two quartz-wolframites deposits of Degana and Sirohi in Rajasthan. India, have been studied by Mössbauer spectroscopy down to 20 K. X-ray diffraction studies with a monochromatic Cu radiation (λKa-1.5405 Å), were carried out to determine the value ofx. The Mössbauer spectra of all seven samples were recored at 300, 200, 100, 50, 40, 30 and 20 K, and were least square fitted for different sites. The Mössbauer parameters are attributed to a high spin ferrous ion in a quite distorted octahedral symmetry, and only one sextet has been resolved below transition temperature.  相似文献   

19.
20.
We present crystallographic and magnetic properties of NiCr1.98 57Fe0.02O4 by using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectroscopy. The lattice constants a0 were determined to be 8.318 Å. The ferrimagnetic Neel temperature (T N) for NiCr1.98 57Fe0.02O4 is determined to be 90 K. The Mössbauer absorption spectra for all chromites at 4.2 K show two well developed sextets superposed with small difference of hyperfine fields (H hf) caused by Cr3?+? ions in two different magnetic sites. The values of the isomer shifts show that the charge states of Fe are Fe3?+? for all temperature range. Ni-chromites Mössbauer spectra below T N present aline broadening due to a Jahn–Teller distortion and show that spin structure behavior of Cr ions change from an incommensurate to a commensurate state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号