首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method has been described for the Spectrophotometric determination of cobalt(II) with 2-(3′-sulfobenzoyl)pyridine benzoylhydrazone (SBPBH). In aqueous solution, cobalt(II) reacts with SBPBH to form a yellow complex, which is not destroyed even by the addition of 3.8 M perchloric acid. The absorption maximum of the complex in 1.5 M perchloric acid medium was found to be 400 nm; the molar absorptivity was 2.17 × 104 liters mol−1 cm−1. The proposed method is fairly selective and has been applied to the determination of cobalt in standard alloy steel samples.  相似文献   

2.
Evaluation of different solid electrode systems for detection of zinc, lead, cobalt, and nickel in process water from metallurgical nickel industry with use of differential pulse stripping voltammetry has been performed. Zinc was detected by differential pulse anodic stripping voltammetry (DPASV) on a dental amalgam electrode as intermetallic Ni–Zn compound after dilution in ammonium buffer solution. The intermetallic compound was observed at –375 mV, and a linear response was found in the range 0.2–1.2 mg L–1 (r2=0.98) for 60 s deposition time. Simultaneous detection of nickel and cobalt in the low g L–1 range was successfully performed by use of adsorptive cathodic stripping voltammetry (AdCSV) of dimethylglyoxime complexes on a silver–bismuth alloy electrode, and a good correlation was found with corresponding AAS results (r2=0.999 for nickel and 0.965 for cobalt). Analyses of lead in the g L–1 range in nickel-plating solution were performed with good sensitivity and stability by DPASV, using a working electrode of silver together with a glassy carbon counter electrode in samples diluted 1:3 with distilled water and acidified with H2SO4 to pH 2. A new commercial automatic at-line system was tested, and the results were found to be in agreement with an older mercury drop system. The stability of the solid electrode systems was found to be from one to several days without any maintenance needed.  相似文献   

3.
The effect of binary metal deposits on a cylindrical carbon-fiber microelectrode on the determination of metals by direct and stripping voltammetry was studied. The electrolytic deposition of a binary system of copper and thallium, cadmium, lead, or mercury on the electrode in an alkaline solution resulted in the disappearance of the electroreduction peak of dissolved oxygen in the potential range from -0.8 to -1.4 V and in a decrease in the background current. Under the conditions of limited diffusion, the peak currents of Ni(II), Co(II), and Zn(II) in differential pulse voltammograms were 3–7 times higher than those calculated for a reversible electrode process under the conditions of semi-infinite diffusion. Because of this, the determination limit for metal ions in direct voltammetry was lowered to 1 X 10-6 M. With a binary copper-thallium system, the peak current of zinc(II) reduction can be be detected in the presence of 5000-fold molar amounts of copper(II). The deposition of binary copper-lead and copper-thallium systems under the conditions of limited diffusion reduced the effect of negative interaction between the components of these systems and made possible the determination of lead(II) and thallium(I) by stripping voltammetry using additional peaks.  相似文献   

4.
The process of reduction and reoxidation of cobalt(II) in thiocyanate solution at hanging mercury drop electrode has been investigated by cyclic voltammetric, chronoamperometric and anodic stripping methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M cobalt(II), the voltammogram on the first cycle at 0.05 V s?1 gives a cathodic peak at ?1.06 V with hysteresis on reversal, and an anodic wave with a peak potential of ?0.28 V and with two shoulders near ?0.38 and ?0.45 V, respectively. Multicyclic voltammograms under the same conditions give a cathodic peak at ?0.90 V and an anodic peak at ?0.45 V. The reduction and reoxidation of cobalt(II) in thiocyanate solution is accelerated by the reduction products of thiocyanate ion, cyanide and sulphide ions, which are produced during the electroreduction of cobalt(II).A mechanism of reduction and reoxidation of cobalt(II) which involves a chemical reduction of thiocyanate ion by electroreduced metallic cobalt and takes into account cyanide and sulphide ions is proposed. The hysteresis on the cathodic wave is caused by the difference in reduction potentials of cobalt(II)-thiocyanate and-cyanide complexes. Cyclic voltammetric study of cobalt(II) in perchlorate solution containing trace amounts of cyanide and sulphide ions supports these conclusions.  相似文献   

5.
A catalytic for determination of nanomolar concentrations of Co(II), i.e., oxidation of -adrenaline hydrochloride with H2O2 in alkaline medium, is proposed. The reaction gives a low limit of detection of 2.5 × 10 −9 M Co(II) in the reaction mixture, good reproducibility with a relative standard deviation (R.S.D.) of 4−5% in the Co(II) concentration range 8.0 × 10−9−8.0 × 10−8M and good selectivity. On the basis of this indicator reaction, a catalytic-spectrophotometric method for the determination of cobalt in small urine samples (5.00 ml) was elaborated. The analysis of 17 urine samples, taken from healthy persons of different ages, gave cobalt concentrations in the range 0.20–1.50 μmol 1−1. The R.S.D. for ten replicate analyses of a urine sample with an average cobalt content of 0.63 μmol 1−1 was 5.6%. The reliability of the method was verified by a comparative photometric method (r = 0.9755) and by a determination based on known additions of cobalt (r = 0.9894).  相似文献   

6.
The first stages of Co–Ni and Co–Ni–Mo deposition in sulphate–citrate medium at pH 4.0 were analysed. In both cases, the formation of non-hydrogenated nickel on the electrode before alloy deposition was detected by linear sweep voltammetry and inductively coupled plasma mass spectrometry. Co–Ni electrodeposition was anomalous since the Co/Ni ratio in the alloy was higher than the corresponding [Co(II)]/[Ni(II)] ratio in solution. The adsorption of Co(II) over the initial nickel could explain the anomalous codeposition, which persisted with the addition of molybdate to the Co–Ni bath. However, the formation of intermediate molybdenum oxides also took place. A mechanism has been proposed to describe the sequence of steps for Co–Ni–Mo electrodeposition. Under our conditions, the alloy is formed mainly from free Co2+ and Ni2+ cations, whereas molybdate is reduced firstly to molybdenum oxide from MoO4(H3Cit)2− and, secondly, NiCit catalyses the subsequent reduction to molybdenum metal of the intermediate [MoO2–NiCit]ads species.  相似文献   

7.
A highly selective method for the determination of trace amounts of nickel(II) by high performance liquid chromatography was developed. 2-[(2-Hydroxyphenyl)azo]-4,5-diphenylimidazole (HAI) was used for pre-column derivatization of nickel(II) in reversed-phase chromatographic separation followed by spectrophotometric detection. In the presence of nickel(II), iron(III), cobalt(II), copper(II), cadmium(II), zinc(II), manganese(II), aluminum(III) and vanadium(V), only nickel(II) chelate with HAI gave a resolved peak in chromatograms with a C8-bonded reversed phase column and a 45% (w/w) acetonitrile-water mobile phase containing 1.0 × 10−4 mol kg−1 ethylenediaminetetraacetic acid and 5.0 × 10−3 mol kg−1 sodium acetate (pH 7.5). The nickel(II) chelate was detected spectrophotometrically at 585 nm. When 100 µL of a test solution was injected, the calibration graph was linear up to 240 pg for nickel(II), and the detection limit defined as three times the standard deviation of the reagent blank was 0.8 pg at 0.001 absorbance unit full scale. The proposed method was applied to the analysis of rice, tea leaves and mussels.  相似文献   

8.
Zinc-cobalt alloy electrodeposits offer enhanced corrosion protection to steel, compared to zinc deposits. A near neutral zinc-cobalt alloy sulfate bath was developed. In the absence of β-naphthol and sodium lauryl sulfate (SLS), only a light grey and non-uniform deposit was obtained. Addition of boric acid yielded a grey and uniform deposit. To obtain the grey uniform alloy deposit, the optimum bath composition was: 0.5 M ZnSO4, 0.5 M CoSO4, 40 g/L H3BO3, 0.865 g/L SLS and 0.345 g/L β-naphthol. The current efficiency for alloy deposition was 50% in the current density range 0.5–2.5 A/dm2. X-ray fluorescence studies on the alloy deposit formed on steel revealed 58–75% zinc on the surface. Anodic stripping voltammetric studies were carried out on zinc-cobalt alloy films formed on glassy carbon to identify the phases formed in the alloy. Zn-Co alloy film dissolution peaks suggested the existence of β, β1 and γ phases of the alloy. Electronic Publication  相似文献   

9.
The extraction and separation of copper(II), zinc(II), cobalt(II), and cadmium(II) were investigated. Both copper(II) and zinc(II) formed ammine-complexes, while cadmium(II) and cobalt(II) formed hydroxide precipitates in an ammonia medium. By the addition of sodium dodecylsulfate (SDS), a copper(II) complex formed an ion-pair (copper-ammine-DS), which was extracted into the SDS phase. However, a zinc(II) complex did not form an ion-pair, and was soluble in water. Copper(II) ion was recovered by stripping (back-extraction) after the addition of hydrochloric acid. This method was applied to the separation of copper(II) in a brass alloy.  相似文献   

10.
A spectrophotometric method for the determination of cobalt is described. The method is based on the formation of an orange color by reaction of cobalt(II) with biacetylmonoxime 2-pyridylhydrazone in basic solutions. The molar absorptivity at 480 nm is about 9.2 × 103 liters mol−1 cm−1 (pH 10) and spectrophotometric sensitivity is 0.0062 μg Co cm−2 for ABSORBANCE = 0.001.  相似文献   

11.
Bismuth film electrode (BiFE) is presented as a promising alternative to mercury electrodes for the simultaneous determination of trace cobalt and nickel in non-deoxygenated solutions. The preplated BiFE was employed under adsorptive stripping constant current chronopotentiometric and adsorptive stripping voltammetric conditions in the presence of dimethylglyoxime complexing agent. BiFE exhibited well-defined and undistorted signals with favorable overall resolution for cobalt and nickel cations, with the signals for both metal cations being practically independent of each other. The stripping performance of BiFE is characterized by good reproducibility (RSD 1.4% for Co(II), and 4.3% for Ni(II)), low detection limits of 0.08 μg l−1 for Co(II) and 0.26 μg l−1 for Ni(II) employing a deposition time of 60 s, in addition to good linearity. The non-toxic character of bismuth imparts the possibility of tailoring disposable and one-shot electrochemical sensors for decentralized environmental, clinical and industrial monitoring of trace cobalt and nickel.  相似文献   

12.
The reagent 3,8,13,18-tetramethyl-21H,23H-porphine-2,7,12,17-tetrapropionic acid or coproporphyrin-I (CPI) was used for the spectrophotometric determination of copper(II) and cobalt(II) in the presence of pyridine and imidazole catalysts. Optimum conditions were investigated and the methods were applied to the determination of parts per billion levels of copper(II) and cobalt(II). The Sandell sensitivities of the recommended procedures were 0.568 μm cm−2 and 0.464 μg cm−2 (for A = 0.001) for copper and cobalt, respectively. The relative standard deviations were 2.0% for copper and 1.0% for cobalt. The kinetics of the reaction of CPI with copper(II) and cobalt(II) in the presence of the catalysts and the influence of the temperature were studied, and their kinetic constants determined.The influence of light on the photodecomposition of CPI was also studied.  相似文献   

13.
Bobrowski A 《Talanta》1994,41(5):725-729
The catalytic adsorptive stripping voltammetric method with alpha-benzil dioxime and nitrite affords numerous advantages in cobalt determination. The detailed conditions of the determination of the cobalt traces in metallic zinc by catalytic adsorptive stripping voltammetry have been investigated. Both the linear sweep and the differential pulse stripping modes can be used with similar sensitivity. Possible interferences by Mn, Pb, Cu, Ni and Fe are evaluated. In the presence of 5 x 10(5) fold excess of Zn the linear dependence of the cobalt CASV peak current on concentration ranged from 0.05 mug/l to 3 mug/l. Optimal conditions include the accumulation potential of -0.65 V and the accumulation time of 10 sec. The results of the determination of 10(-5)% level of Co in the metallic zinc showed good reproducibility (relative standard deviation, RSD = 0.07) and reliability.  相似文献   

14.
We report novel zinc ion conducting polymer gel electrolytes (PGEs) based on non-volatile room temperature ionic liquids. The PGEs consist of an ionic liquid, with a zinc salt dissolved in it, blended with a polymer matrix, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). The resultant electrolyte membranes are freestanding, translucent, flexible and elastic, with excellent mechanical integrity and strength. They possess exceptional thermal stability, exhibit essentially no weight loss under dynamic vacuum or upon heating to 200 °C, and remain the same gel phase in wide temperature ranges, with ionic conductivities on the order of 10−3 S/cm at room temperature, 10−4 S/cm at −20 °C and 4–5 × 10−3 S/cm at 80 °C. Electrochemical tests show that zinc ions are mobile in the membranes and zinc metal is capable of dissolution into and deposition from the membranes. The membranes also exhibit wide electrochemical stability windows. The results of this study demonstrate the promise of developing PGEs based on ionic liquids for potential application in next-generation non-aqueous zinc battery systems.  相似文献   

15.
A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of cobalt(II) oxide (CoO) in deoxygenated ammonium and sodium hydroxide solutions between 22 and 288°C. Co(II) ion activity in aqueous solution was controlled by a hydrous Co(II) oxide when nitrogen was used for deoxygenation and by metallic cobalt when hydrogen was used. Measured cobalt solubilities are interpreted using a Co(II) ion hydroxo- and amminocomplexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A common set of thermodynamic properties for the species Co(OH)+, Co(OH)2(aq) and Co(OH)(NH3)+ is provided to permit accurate cobalt oxide solubility calculations over broad ranges of temperature and alkalinity.  相似文献   

16.
Routine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic-level Zn deposition. Here, based on underpotential deposition (UPD), we propose an “escort effect” of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900 h at 1 mA cm−2 (more than 4 times longer than the blank one). Moreover, the universality of “escort effect” is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic-level principles by controlling interfacial electrochemistry for various metal batteries.  相似文献   

17.
In this paper, we report on zinc deposition and stripping in an ionic liquid polymer gel electrolyte on gold and copper substrates, respectively. The ionic liquid-based polymer gel electrolyte is prepared by combining the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate ([Py1,4]TfO), with Zn(TfO)2 and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). The ionic liquid polymer gel electrolyte exhibits good conductivity (2.2 mS cm?1) and good mechanical stability. Zinc deposition and stripping in the ionic liquid polymer gel electrolyte were studied by cyclic voltammetry, potentiostatic, and galvanostatic cycling (charging/discharging) experiments. The gel electrolyte exhibits a promising electrochemical stability and allows a quasi-reversible zinc deposition/stripping. The morphology of the zinc deposits after 10 cycles of zinc deposition/stripping is compact and dense, and deposits without any dendrite formation can be obtained. The quasi-reversibility of the electrochemical deposition/stripping of zinc in this ionic liquid polymer gel electrolyte is of interest for rechargeable zinc-based batteries.  相似文献   

18.
The application of derivative Spectrophotometry to the simultaneous determination of copper(II) and cobalt(II) with methylethylenediaminetetraacetic acid is described. The procedure does not require equations to be solved, and is suitable for concentrations of 0.2–8.0 mg ml−1 of cobalt and 0.05–1.60 mg ml−1 of copper. The main interferences, both anionic and cationic, are easily eliminated.  相似文献   

19.
In order to assess the contribution and analytical significance of migration, electrochemical studies on the deposition and stripping of lead at a carbon fibre microelectrode (diameter of 10 μm) have been undertaken in aqueous solutions containing 1 mM lead ions with variable KNO3 supporting electrolyte concentrations (10−1 to 10−5 M), as well as in the total absence of deliberately added supporting electrolyte. The methodology involved the application of cyclic voltammetry to characterise the Pb2+ (solution)+2ePb (metal) process in both the reduction (Pb deposition) and stripping (Pb dissolution) directions. The use of a mercury-free carbon surfaces means that the lead stripping does not occur from the amalgam state, as is commonly the case in anodic stripping voltammetry. In the deposition step, the current rises sharply with potential in response to a lead nucleation-growth process and then reaches an almost potential independent limiting value. The stripping step, obtained on the reverse scan, exhibited oxidation peak currents resulting from the redissolution or stripping of the metal from the electrode surface. The influence of the electrolyte concentration and hence migration current at −0.8 V versus Ag/AgCl for the deposition process, as well on the redissolution peak current and the dependence of the voltammograms on scan rate (10–1000 mV) are discussed. Interestingly, neither deposition limiting nor stripping peak currents vary in a simple manner with added supporting electrolyte concentrations, with maximum values being observed at 10−5 M rather than zero concentration of added KNO3. An important implication for the voltammetric determination of lead in low ionic strength media by the very sensitive technique of anodic stripping voltammetry is that use of the method of standard additions commonly employed to minimise unknown matrix problems, is prone to error when contributions to the process from migration current are important.  相似文献   

20.
In the potential region corresponding to the reduction of Co(OH)+ to the metal, a catalytic polarographic current is observed in an ammoniacal buffer solution containing nitrite ion. In neutral unbuffered media, the catalytic current appears even on the limiting plateau of aquacobalt(II) reduction wave. The catalytic current is due to the reoxidation of an electrodeposited metallic cobalt to Co(II) by nitrite ion. The condition necessary for the catalytic reaction to proceed is the increase in pH at the electrode surface. It is shown that the hydroxide ion is produced as a result of the catalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号