共查询到16条相似文献,搜索用时 78 毫秒
1.
Transport polygonal properties in a multi-terminal regular quantum ring with Rashba spin-orbit coupling
下载免费PDF全文

<正>Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling(SOC) are investigated analytically using quantum networks and the transport matrix method.The results show that conductances remain at exactly the same values when the output leads are located at axisymmetric positions.However,for the nonaxisymmetrical case,there is a phase difference between the upper and lower arm,which leads to zero conductances appearing periodically.An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition,the position of zero conductance is regulated with the strength of the Rashba SOC. 相似文献
2.
Spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling
下载免费PDF全文

Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future. 相似文献
3.
Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin-orbit couplings
下载免费PDF全文

The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic,extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically.Based on a unified semiclassical theoretical approach,it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions,namely an intrinsic contribution determined by the Berry curvature in the momentum space,an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering.The characteristics of these competing contributions are discussed in detail in the paper. 相似文献
4.
The de Haas-van Alphen(dHvA) oscillations of electronic magnetization in a monolayer graphene with structureinduced spin-orbit interaction(SOI) are studied.The results show that the dHvA oscillating centre in this system deviates from the well known(zero) value in a conventional two-dimensional electron gas.The inclusion of SOI will change the well-defined sawtooth pattern of magnetic quantum oscillations and result in a beating pattern.In addition,the SOI effects on Hall conductance and magnetic susceptibility are also discussed. 相似文献
5.
WANG Xin qiang 《原子与分子物理学报》2000,17(1):7-10
The low lying excitation energy spectra of two, three and five quantum dot electrons with harmonic model interactions in a large magnetic field are calculated by the Hartree Fock(HF) methods. Correlation effects on the energy level structures are investigated by comparing the HF results with the exact ones. It is found that the pure collective excitations(center of mass mode quanta) existing in the exact energy spectra do not appear in the HF energy spectra. The degeneracies of energy levels are also re... 相似文献
6.
Influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a Rashba two-dimensional electron gas
下载免费PDF全文

We study theoretically the influence of spin--orbit
coupling induced by in-plane external electric field on the
intrinsic spin-Hall effect in a two-dimensional electron gas with
Rashba spin--orbit coupling. We show that, after such an influence is
taken into account, the static intrinsic spin-Hall effect can be
stabilized in a disordered Rashba two-dimensional electron gas, and
the static intrinsic spin-Hall conductivity shall exhibit some
interesting characteristics as conceived in some original
theoretical proposals. 相似文献
7.
Pure spin polarized transport based on Rashba spin orbit interaction through the Aharonov Bohm interferometer embodied four-quantum-dot ring
下载免费PDF全文

The spin-polarized linear conductance spectrum and current-voltage characteristics in a four-quantum-dot ring embodied into Aharonov-Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin-orbit interaction. It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π, and that Hubbard U cannot influence the electron transport properties in this case. When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength, the electronic spin polarization can reach a maximum value. Furthermore, by adjusting the bias voltages applied to the leads, the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations. Based on the numerical results, such a model can be applied to the design of a spin filter device. 相似文献
8.
Polarized spin transport in mesoscopic quantum rings with electron--phonon and Rashba spin--orbit coupling
下载免费PDF全文

The influence of electron--phonon (EP) scattering on spin
polarization of current output from a mesoscopic ring with Rashba
spin--orbit (SO) interaction is numerically investigated. There are
three leads connecting to the ring at different positions;
unpolarized current is injected to one of them, and the other two
are output channels with different bias voltages. The spin
polarization of current in the outgoing leads shows oscillations as a
function of EP coupling strength owing to the quantum interference
of EP states in the ring region. As temperature increases, the
oscillations are evidently suppressed, implying decoherence of
the EP states. The simulation shows that the magnitude of polarized
current is sensitive to the location of the lead. The polarized
current depends on the connecting position of the lead in a
complicated way due to the spin-sensitive quantum interference
effects caused by different phases accumulated by transmitting
electrons with opposite spin states along different paths. 相似文献
9.
We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin-orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can induce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed. 相似文献
10.
Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin-orbit interaction and Zeeman splitting
下载免费PDF全文

The thermoelectric and the thermospin transport properties,including electrical conductivity,Seebeck coefficient,thermal conductivity,and thermoelectric figure of merit,of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique.The periodic Anderson model is used to describe the quantum dot system,the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered.The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects.We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only. 相似文献
11.
Electronic transport through parallel coupled double quantum dots (DQD) with Rashba spin-orbit (RSO) interaction is investigated in Kondo regime by means of the slave-boson mean field approximation at zero temperature. By the co-action of the phase factor deduced by RSO interaction and the magnetic flux penetrating the parallel DQD, an interesting spin-dependent Kondo effect emerges. The molecular state representation theory is used to obtain a detailed understanding of the spin-dependent Kondo effect. It is shown that Quantum interference between the bonding Kondo state and antibonding state, which is modulated by the RSO interaction, plays a crucial role to the density of states and the linear conductance. The magnitude of each spin component conductance can be modulated by the RSO interaction strength. The conductance of each spin component exhibits 4π-periodic function with respect to φR. Moreover, the swap operation in the parallel DQD system can be implemented by tuning the RSO interaction. 相似文献
12.
Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spinben orbit interaction and Zeeman splitting
下载免费PDF全文

The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only. 相似文献
13.
A spin device, consisting of parallel-coupled double quantum dots and three normal metal leads, is proposed to realize spin-polarized current without the help of magnetic field and magnetic material. Based on the Keldysh nonequilibrium Green function technique and equation of motion method, the spin-dependent current formula in each lead is derived. It is shown that not only a fully polarized current but also a tunable pure spin current can be obtained by modulating the structure parameters, strength of Rashba spin-orbit interaction and bias voltages properly. It further demonstrates the dependence of the spin-polarized current on the strength of the Rashba spin-orbit interaction. 相似文献
14.
M. Crisan I. Grosu I. ifrea 《Physica E: Low-dimensional Systems and Nanostructures》2007,39(2):214-218
We analyze the zero temperature conductance of a parallel T-shaped double quantum dot system. We present an analytical expression for the conductance of the system in terms of the total number of electrons in both quantum dots. Our results confirm that the system's conductance is strongly influenced by the dot which is not directly connected to the leads. We discuss our results in connection with similar results reported in the literature. 相似文献
15.
Xing-Tao An 《Physics letters. A》2008,372(45):6790-6796
Spin polarization in parallel double quantum dots embedded in arms of Aharonov-Bohm interferometer is investigated. The spin-orbit interaction exists in quantum dots. We find that the spin polarization is quite large even with a weak spin-orbit interaction. The direction and the strength of the spin polarization are well controllable and manipulatable by simply varying the strength of spin-orbit interaction or the energy levels in quantum dots. Moreover, electron-electron interaction strengthens the spin accumulation when the energy levels of the two quantum dots are identical. As the energy levels are unequal, electron-electron interaction cannot increase the spin accumulation. It is worth mentioning that the device is free of a magnetic field or a ferromagnetic material and it can be easily realized with present technology. 相似文献
16.
The effect of Rashba spin-orbit coupling (SOC) on electron transport in asymmetrically coupled regular polygonal quantum ring is investigated. In absence of SOC, two kinds of conductance zeros appear periodically. In presence of SOC, one kind of conductance zero can be lifted by the Rashba SOC, the others persist. 相似文献