首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A simple method for synthesis of well dispersed cadmium sulphide nanoparticles embedded in a polyethylene glycol matrix (PEG 400) in thin film form is presented. The large blue shift of the band gap energy of the CdS nanoparticles compared to the bulk semiconductors is observed via UV-vis absorption spectra. Photoluminescence spectra of CdS nanocomposite films show that the emission peaks shift towards the longer wavelength with the increase of annealing temperature. Transmission electron microscopic images as well as Raman scattering studies confirm the CdS nanometer size particle formation within the polymer matrix. The particle size is about 8 nm. Selected area electron diffraction (SAED) shows the cubic zinc blende polycrystalline rings. Third-order optical nonlinearity of the CdS nanopartieles embedded in polymer thin films is studied with the Z-scan technique under 1064 nm excitation. The results show that the CdS nanocomposite film exhibits negative nonlinear refraction index and positive absorption coefficient. The film shows large optical nonlinearity, and the magnitude of the third-order nonlinear susceptibility of the film is calculated to be 1.73 × 10^-9 esu. The corresponding mechanism is discussed.  相似文献   

2.
The CdS nanoparticles along with Eu3+ ions were embedded in silica xerogel by sol gel technique. The samples were studied by TGA, DTA and fluorescence techniques. The result suggested that doping of CdS nanoparticles enhanced the luminescence properties of Eu3+ even in the gel stage itself and this avoids the need of heating gel at higher temperature. The effects of CdS nanoparticles on the Eu3+ luminescence were discussed.  相似文献   

3.
Photoluminescence of CdS nanoparticles embedded in a starch matrix   总被引:1,自引:0,他引:1  
CdS nanoparticles were synthesized by precipitation in aqueous solution using starch as the capping molecule, and the effect of the pH of the solution on the optical absorption, photoluminescence, and size of the nanoparticles was studied. Absorption spectra, obtained by photoacoustic spectroscopy, indicated that the band gap energy of the crystalline nanoparticles decreased from 2.68 eV down to 2.48 eV by increasing the pH of the solution from 9 up to 14. The X-ray diffraction analysis revealed that the CdS nanoparticles were of zinc blende structure, and that the particle size increased from 1.35 nm up to 2.45 nm with increasing pH. In addition, temperature-dependent photoluminescence (PL) measurements of the capped material showed a blue-shift of the emission peak for temperatures higher than 150 K, indicating the influence of starch on the formation of defect levels on the surface of the CdS nanoparticles.  相似文献   

4.
Core–shell CdS/ZnS nanoparticles in arachidic acid film were prepared through a novel Langmuir–Blodgett (LB) approach. Post-deposition treatment of the precursor LB multilayers of cadmium arachidate with H2S gas followed by intercalation of Zn2+ ions and further sulfidation result in the formation of CdS/ZnS nanoparticles in the LB film. The formation of these nanoparticles and resulting changes in layered structures were studied by FTIR and X-ray reflection measurements. The optical properties were studied using UV–vis absorption and photoluminescence spectroscopy. A red-shift in the absorption spectrum and enhancement of CdS excitonic emission together with reduction of surface states emission suggest that after the intercalation step, a thin layer of ZnS surrounds the CdS nanoparticles, thus forming a core–shell structure. Subsequent to the second sulfidation, a further red-shift in absorption suggests the formation of a thicker ZnS coating on CdS. Electron diffraction of CdS nanoparticles coated with thicker ZnS showed the diffraction patterns of only ZnS, as expected for core–shell structures.  相似文献   

5.
Sm3+ doped CdS nanoparticles have been prepared by sol-gel method. The effect of annealing temperatures and doping concentrations of CdS on the photoluminescence spectra of Sm3+ were studied. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4, and Ω6) have been computed and used to parameterize the radiative properties. The influences of CdS on Sm3+ ions were studied by fluorescence spectroscopy. The fluorescence spectra revealed that the emission intensity of samarium increased considerably in the presence of CdS nanoparticles. The evaluation of radiative properties of Sm3+ containing CdS showed that the 4G5/26H7/2 transition in silica matrix had the potential to be a laser transition.  相似文献   

6.
Attempts were made to provide the data concerning directed synthesis of semiconductor nanoparticles in a dielectric silica-based glass matrix. These attempts involve finding out the connections between the structure, size of CdS nanoparticles, and optical properties of the nanocomposites produced. High-resolution focused ion beam scanning electron microscopy images of CdS nanoparticles incorporated in glass and SAXS results confirm the formation of uniformly distributed spherical CdS nanoparticles with an average diameter of about 6.2 nm. UV–Vis measurements show that CdS composites possess a direct bandgap wider than 2.45 eV depending on the heat treatment conditions; thus, heat treatment can be used to control nanoparticle size in each selected composite. The emission spectra showed a maximum at about 603 nm and a red shift of about 100 nm with increasing annealing temperature that is associated with the presence of defect states in the nanoparticles. In addition, semiconductor phase concentration in the glass matrix was found by using optical absorption data for the first time, which allows understanding the effect of nanocomposite structure on luminescence properties.  相似文献   

7.
The presence of surfactants (Hexamine, tetraethylammonium bromide (TEAB), cetyltrimethylammonium bromide (CTAB), tetraoctylammonium bromide (TOAB) and PVP) on the surface of zinc oxide (ZnO) nanoparticles resulted variation in their optical properties. The optical properties of each surfactant-capped zinc oxide nanoparticles were investigated using UV-visible absorption and fluorescence techniques. The particle size of these nanoparticles were calculated from their absorption edge, and found to be in the quantum confinement range. The absorption spectra and fluorescent emission spectra showed a significant blue shift compared to that of the bulk zinc oxide. Large reduction in the intensity of visible emission of zinc oxide/surfactant was observed and these emissions were vanished more quickly, with the decrease in excitation energy, for the smaller nanoparticles. Out of the four surfactants (other than PVP), CTAB-capped zinc oxide has smallest particle size of 2.4 nm, as calculated from the absorption spectrum. Thus the presence of surfactant on the surface of zinc oxide plays a significant role in reducing defect emissions. Furthermore, ZnO/PVP nanoparticles showed no separate UV emission peak; however, the excitonic UV emission and the visible emission at 420 nm overlap to form a single broad band around 420 nm.  相似文献   

8.
CdS/SiO_2半导体玻璃复合材料的低频Raman散射光谱研究王凯旋,隗罡,黄建滨,戴庆红,赵壁英,桂琳琳,谢有畅,唐有祺(北京大学物理化学研究所北京100871)AStudyofCdSSemieonductorinSilicaGlassesbyL...  相似文献   

9.
Citrate-stabilized CdS nanoparticles of size 4 nm are obtained by varying the sulfide:citrate ion concentration in a simple aqueous synthesis method. The optical absorption and photoluminescence properties of the nanoparticles are studied. The size of the crystallites is found to be less affected by sulfide:citrate ratio. At lower concentrations of S2−, trap state emission is favoured and at higher concentrations excitonic transition is predominant as shown by optical absorption and photoluminescence spectra. Effective surface capping and optimum concentration of S2− leads to the quenching of surface-defect-related emission. Increase in citrate ion concentration is found to increase the intensity of photoluminescence band arising from trap state emission revealing the role of sulfide:citrate ratio on surface modification of CdS nanocrystals. The nanoparticles are hexagonal as shown by the X-ray diffraction and selected area electron diffraction pattern.  相似文献   

10.
"提出了一种水相中制备CdTe/CdS核壳结构纳米粒子的方法.用Te粉作为碲源,用Na2S作为硫源,在50 ℃下制备了CdTe/CdS核壳结构纳米粒子. 用紫外可见吸收光谱和荧光光谱分析了CdS壳层对CdTe核的影响. 随CdS壳层厚度的增加,紫外可见吸收光谱和荧光光谱均发生了红移. CdS壳层厚度较薄时,CdTe/CdS纳米晶的荧光强度较CdTe纳米粒子有显著提高;而CdS壳层厚度较厚时,CdTe/CdS纳米晶的荧光强度会逐渐降低. 用反相胶束法在CdTe/CdS核壳结构纳米粒子的表面包被一层SiO2,  相似文献   

11.
The photoluminescence (PL) and optical properties of CdS nanoparticles prepared by the solid-state method at low temperature have been discussed. The effects of NaCl and anionic surfactant SDBS (sodium dodecylbenzene sulfonate) on the luminescent properties of CdS nanophosphors prepared using this method, without the inert gas or the H2S environment, were studied separately. The synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), and energy dispersive X-ray spectroscopy (EDAX). UV–VIS absorption and PL spectra were also studied. XRD studies confirmed the single-phase formation of CdS nanoparticles. TEM micrograph revealed the formation of nearly spherical nanoparticles with a diameter of 2.5 nm. The PL emission for the CdS shows the main peak at 560 nm with a shoulder at 624 nm, with an increase in the PL intensity after the addition of SDBS. The effect of Mn doping on PL intensity has also been investigated. The PL spectra show that the emission intensity decreases as the dopant concentration increases.  相似文献   

12.
In the present study we have synthesized CdS semiconducting quantum dots by reverse micelle method using dodecanthiol (C12H26S) as the capping agent. The synthetic medium consists of a quaternary water/Sodium dodecyl sulfate (SDS)/buta-1-ol/hexane microemulsion. The size of the particles was controlled by changing the molar ratio W=[H2O]/[SdS], where [H2O] and [SdS] are the molar concentrations in hexane of water and SdS respectively. The CdS nanoparticles were embedded in a new PPV derivate named Fluorinated Bisphenol A P-phenylenevinylene (BPAF-PPV). Fourier transform infrared spectroscopy (FT-IR) showed a strong interaction of thiol groups with CdS nanoparticles. Blue shift of the optical absorption onset is observed due to quantum size effect. The band gap and particle sizes of the nanoparticles were deduced from optical absorption spectra and the use of an effective mass approximation (EMA) model. Photoluminescence spectroscopy evidenced a charge transfer process via the interface between BPAF-PPV/CdS nanoparticles.  相似文献   

13.
CdSe/CdS核/壳型纳米晶的光谱特性   总被引:7,自引:0,他引:7  
以巯基乙酸为稳定剂制备了CdSe/CdS核/壳型纳米晶。用光吸收谱(Abs)、光致发光谱(PL)及光致发光激发谱(PLE)研究了CdS壳层对CdSe纳米晶电子结构,从而对其吸收和发光性能的影响。根据PL和PLE的结果以及带边激子精细结构的计算结果,我们用尺寸很小的纳米晶中所形成的基激缔合物解释了PL光谱与吸收边之间较大的Stokes位移。  相似文献   

14.
CdSe/CdS core/shell nanocrystals have been synthesized through a low cost and simple two-phase thermal route. The optical spectroscopy and structural characterization evidenced the core/shell structure of the CdSe/CdS nanoparticles. The X-ray diffraction patterns of CdSe and CdSe/CdS nanoparticles exhibited peak positions corresponding to those of their bulk cubic crystal structures. The X-ray photoelectron spectroscopy data confirmed the elemental composition of the CdSe/CdS nanoparticles. The absorption spectra of core/shell nanoparticles showed red shift with respect to the core CdSe nanoparticles. The photoluminescence study indicates that the intensity of the emission maximum is considerably increased in the core/shell structure as compared with the parent material, and the capping of CdS nanoparticles with CdSe material exhibit a near band-edge emission, indicating a successful passivation by removing surface defects. The high-resolution transmission microscope images of the bare and core/shell nanoparticles ascertained the monodispersed and well-defined spherical particles. The average particle sizes for CdSe and CdSe/CdS nanoparticles are 2.5 and 5 nm, respectively, thus confirming, the larger diameter of CdSe/CdS core/shell nanostructure than the core CdSe nanoparticles.  相似文献   

15.
The optical waveguide behaviors of CdS and CdS x Se1−x nanostructures are studied using near-field optical microscopy. Optical measurements demonstrate that light may be guided on sub-wavelength scales along CdS nanoribbons in straight or bent structures. The photoluminescence (PL) spectra from nanoribbon emission using scanning near-field optical microscopy are analyzed under different incident laser intensities. The PL spectra along Se-doped and undoped CdS nanoribbons at different propagation distances are investigated. Both the guided PL spectra of Se-doped and undoped CdS nanoribbons show red-shifts because of the band-edge absorption. Our results are useful for the development of new kinds of functional nano devices. Supported by the National Natural Science Foundation of China (Grant Nos. 10574002, 90406007, and 50602015) and the National Basic Research Program of China (Grant No. 2007CB936800)  相似文献   

16.
采用反胶束法,合成了具有不同尺寸的CdS纳米颗粒。利用透射电镜(TEM)和高分辨透射电镜(HR-TEM)以及紫外-可见光吸收谱(UV/vis)对这些纳米颗粒的结构特性进行了表征和分析。利用拉曼光谱仪测量了这些具有不同尺寸的CdS纳米颗粒的拉曼特性。研究结果表明:当纳米颗粒尺寸小于一定值时,拉曼峰出现了蓝移,大于一定值时出现了红移,这些不同的结果是与纳米颗粒的尺寸效应以及纳米颗粒结构中具有各向异性的电子-声子耦合作用有关。  相似文献   

17.
Good quality cadmium sulfide (CdS) thin films were deposited on substrates of glass with different Cu concentrations using a sophisticated spray pyrolysis technique. Structural study confirms the formation of hexagonal phase CdS films with good crystallinity. The crystallite size was calculated to be in range from 19 to 21 nm and the texture coefficient was found to be higher along (110) plane for 1.0 wt.% CdS:Cu film. Further confirmation of hexagonal phase with improved crystallinity was approved by vibrational spectroscopy analysis. SEM mapping/EDX spectra shows the homogeneous presence of Cu in final film. SEM signify the nanostructured thin films fabrication with nanocrystallites formations. The optical transparency of fabricated films was noticed in range of 60 to 80%. The absorption and refractive indices values were estimated and found in range of 0.03 to 0.24, 1 to 3. The direct energy gap was noticed to reduce from 2.44 to 2. 31 eV by Cu doping. The PL spectra contains a single peak in range from 502 to 532 nm for pure and Cu doped CdS films, which is assigned to green emission and noted to be shifted towards lower wavelength. Dielectric constant, loss. loss tangent and conductivity were also determined and discussed. Moreover, the third order nonlinear susceptibility and nonlinear refractive index were calculated and found to be of high orders. The optical limiting study was also carried and shows noticeable effect of Cu doping. All results suggest that the CdS:Cu films are of good quality hence can be employed in opto-nonlinear devices.  相似文献   

18.
A series of trivalent rare-earth element ions (europium, terbium, dysprosium) singly- and co-doped strontium yttrium borate phosphors was synthesized via the sol–gel method. The phase formation, luminescence properties, decay times, and energy transfer behaviors from terbium ions to europium ions, the thermal stability, and the Commission Internationale de L’Eclairage coordinates were investigated. Under the excitation of ultraviolet light, the singly doped phosphors exhibited green emission of terbium ions, white emission of dysprosium ions, and red emission of europium ions, respectively. For the terbium and europium ions co-doped strontium yttrium borate samples, a white emission can be realized by blending the doping concentration of terbium and europium ions. The critical distance between terbium and europium ions has been calculated to be about 14.52?Å and the energy transfer from terbium to europium occurred through the dipole–quadrupole interaction. At 150°C, the emission intensity of terbium and europium in the 12?mol% terbium and 14?mol% europium co-doped strontium yttrium borate sample was maintained at about 74% and 87% of their corresponding initial values, respectively, and the dysprosium ions singly doped strontium yttrium borate sample showed about 70% of its initial emission intensity at room temperature. The above results suggested that europium, terbium, dysprosium ions singly- and co-doped strontium yttrium borate phosphors have potential applications as ultraviolet-convertible phosphors.  相似文献   

19.
Cadmium sulfide (CdS) has been synthesized by a sol–gel route in order to obtain chemically protected, stable nanoparticles. The CdS nanoparticles in the SiO2 gel matrix were dried to form monoliths of 1 in. diameter. The TEOS:H2O:HCl:C2H5OH and TEOS/Cd mole ratios were varied to obtain narrow size distributed CdS nanoparticles. The UV absorption measurements indicated sharp absorption at 260 and 350 nm for different precursor compositions. SiO2 gel containing the CdS nanoparticles was spin coated onto substrates in order to monitor the surface morphology of the samples. Scanning electron microscope measurements revealed formation of CdS nanoparticles within the branches of gel-network. Depending upon the mole ratio of additives and drying method, fibers or monolithic tablets of CdS nanoparticles could be produced.  相似文献   

20.
核壳结构CdS/ZnS纳米微粒的制备与光学特性   总被引:6,自引:0,他引:6  
用微乳液法制备CdS纳米微粒 ,以ZnS对其进行表面修饰 ,得到具有核壳结构的CdS/ZnS纳米微粒 .采用X射线衍射 (XRD)、透射电镜 (TEM )表征其结构、粒度和形貌 ,紫外 可见吸收光谱 (UV)、光致发光光谱(PL)表征其光学特性 .制得的CdS近似呈球形 ,直径为 3.3nm ;以XRD和UV证实了CdS/ZnS核壳结构的实现 .研究了不同ZnS壳层厚度对CdS纳米微粒光学性能的影响 ,UV谱表明随着壳层厚度的增加纳米微粒的吸收带边有轻微的红移 ,同时短波吸收增强 ;PL谱表明壳层ZnS的包覆可减少CdS纳米微粒的表面缺陷 ,带边直接复合发光的几率增大 ,具有合适的壳层厚度时发光效率大大提高 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号