首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An investigation is described for instability problem of flow through a pipe of circular cross-section. As a disturbance motion, we consider a general non-axisymmetric mode. An associated amplitude or modulation equation has been derived for this disturbance motion. This equation belongs to a diffusion type. The coefficient of it can be negative while Reynolds number increases, because of the complex interaction between molecular diffusion and convection. The negative diffusivity, when it occurs, causes a concentration and focussing of energy within decaying slugs, acting as a role of reversing natural decays.  相似文献   

2.
《Fluid Dynamics Research》1993,11(1-2):61-74
An experiment was performed to examine the mechanism of flow pattern transition from bubble flow to slug flow in a riser. The flow was measured by a double resistivity probe system, and photographs of the flow were taken using strobe lights. The negative diffusion distance of bubbles was estimated using a voidage wave equation and compared with the interbubble distance. The flow pattern transition from bubble flow to slug flow occurred when the diffusion distance was larger than the interbubble distance. Conversely, when the diffusion distance was smaller than the interbubble distance, the bubble flow was sustained. Therefore, it is found that the negative diffusion caused by the instability of the voidage wave brings about the flow pattern transition.  相似文献   

3.
对流扩散方程的迎风变换及相应有限差分方法   总被引:15,自引:0,他引:15  
陈国谦  高智 《力学学报》1991,23(4):418-425
本文提出所谓迎风变换,将对流扩散方程分解为对流迎风函数和扩散方程,并构造相应的有限差分格式。对流迎风函数以简明的指数解析形式反映对流扩散现象的迎风效应,原则上消除了源于不对称对流算子的困难,能够便利对流扩散方程的数值求解。有限差分格式具有二阶精度和无条件稳定性,算例表明其准确性、收敛速度及对边界层效应的适应能力均明显优于中心差分格式和迎风差分格式。  相似文献   

4.
A mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. A more general approach is however provided by the integral equation for the so-called continuous time random walk (CTRW), which can be understood as a random walk subordinated to a renewal process. We show how this integral equation reduces to our fractional diffusion equations by a properly scaled passage to the limit of compressed waiting times and jumps. The essential assumption is that the probabilities for waiting times and jumps behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. Illustrating examples are given, numerical results and plots of simulations are displayed.  相似文献   

5.
A mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. A more general approach is however provided by the integral equation for the so-called continuous time random walk (CTRW), which can be understood as a random walk subordinated to a renewal process. We show how this integral equation reduces to our fractional diffusion equations by a properly scaled passage to the limit of compressed waiting times and jumps. The essential assumption is that the probabilities for waiting times and jumps behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. Illustrating examples are given, numerical results and plots of simulations are displayed.  相似文献   

6.
The problem of the asymptotically correct reduction of a 3-D mass (heat) transfer equation to a 1-D equation in a flow with anisotropic diffusion properties is considered. The convective mass (heat) transfer domain is a cylindrical channel of arbitrary cross section. The diffusion coefficient matrix is assumed to be independent of the spatial coordinates. In the equivalent diffusion equation constructed, a certain effective diffusion (dispersion [1]) coefficient is introduced. Formulas for this coefficient are obtained. A relation between the effective diffusion coefficient calculations and the problem of minimization of a certain functional is established, i. e. the possibility of calculations based on variational methods is noted. An example of an exact calculation of the effective diffusion coefficient is considered. The possibility of a generalization of the problem, in which the effective diffusion (heat conduction) equation is essentially a nonlinear equation of general form for the one-dimensional case, is indicated. Sankt-Peterburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 110–123, March–April, 2000.  相似文献   

7.
Scalar diffusion in one-dimensional Burgers' flow is considered. When the Prandtl number is unity, the diffusion equation with convective term is reduced to a simple diffusion equation by a generalized Cole-Hopf transformation. An exact solution of an initial value problem is obtained in a closed form. When the Prandtl number is arbitrary, a similar analytical treatment is possible for limited classes of Burgers' flow (expansion wave and single shock). The statistics of scalar field are discussed briefly.  相似文献   

8.
This article proposes a numerical solution for the diffusion equation applied to solids with arbitrary geometry using non-orthogonal structured grids for the boundary condition of the first kind. A transient three-dimensional mathematical formulation written in boundary fitted coordinates and numerical formalism to discretize the diffusion equation by using the finite volume method, including numerical analysis of the computational solution are presented. To validate the proposed solution, the results obtained in this work were compared with well-known numerical solution available in literature and good agreement was observed. In order to verify the potential of the proposed numerical solution, it was applied to describe mass transfer inside ceramic roof tiles during drying. For that, it was used experimental data of the drying kinetics at the following temperatures: 55.6; 69.7; 82.7 and 98.6 °C. An optimization technique using experimental dataset has been presented to estimation of transport properties. The obtained statistical indicators enable to conclude that the numerical solution satisfactorily describes the drying processes.  相似文献   

9.
An analytic solution to the one dimensional heat diffusion equation is presented where the diffusion coefficient varies as a power of temperature. The discussion is motivated by the transmission of heat through the strongly nonlinear medium of soil. Under boundary conditions representing the daily, or seasonal, sinusoidal fluctuation in temperature it is seen that, despite the nonlinearity, the period of the oscillation is preserved on passage through the medium. The nonlinearity acts to accelerate the heating phase and retard the cooling phase within a period which itself remains stable. These effects are calculable from a second harmonic arising in the analysis.  相似文献   

10.
We study the Boltzmann equation for a mixture of two gases in one space dimension with initial condition of one gas near vacuum and the other near a Maxwellian equilibrium state. A qualitative-quantitative mathematical analysis is developed to study this mass diffusion problem based on the Green’s function of the Boltzmann equation for the single species hard sphere collision model in Liu andYu (Commun Pure Appl Math 57:1543–1608, 2004). The cross-species resonance of the mass diffusion and the diffusion-sound wave is investigated. An exponentially sharp global solution is obtained.  相似文献   

11.
A high‐order alternating direction implicit (ADI) method for solving the unsteady convection‐dominated diffusion equation is developed. The fourth‐order Padé scheme is used for the discretization of the convection terms, while the second‐order Padé scheme is used for the diffusion terms. The Crank–Nicolson scheme and ADI factorization are applied for time integration. After ADI factorization, the two‐dimensional problem becomes a sequence of one‐dimensional problems. The solution procedure consists of multiple use of a one‐dimensional tridiagonal matrix algorithm that produces a computationally cost‐effective solver. Von Neumann stability analysis is performed to show that the method is unconditionally stable. An unsteady two‐dimensional problem concerning convection‐dominated propagation of a Gaussian pulse is studied to test its numerical accuracy and compare it to other high‐order ADI methods. The results show that the overall numerical accuracy can reach third or fourth order for the convection‐dominated diffusion equation depending on the magnitude of diffusivity, while the computational cost is much lower than other high‐order numerical methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A semi-analytic solution of the consolidation problem in a finite hollow axisymmetric elastic porous medium is given. According to Biot's theory, we have rigorously derived the consolidation equations and demonstrated that in the axisymmetric problems, the pore pressure diffusion equation can be uncoupled. In the problem of infinite domain, the uncoupled pressure diffusion equation is homogeneous and only the diffusion coefficient is changed. In the problem of finite domain, the uncoupled pressure diffusion equation is nonhomogeneous. In fact, it is a linear differential-integral equation. We solve it by the variables separation method in the time domain.  相似文献   

13.
Tumour growth results, in particular, from cell–cell interaction and tumour and healthy cell proliferation. The complexity of the cellular microenvironment may then be framed within the theory of mixtures by looking at cell populations as the constituents of a mixture. In this paper the balance equations are reviewed to account for directionality onto a collective migration of the tumour cell population, via an attractive force of the chemotactic type, in addition to the customary pressure term. The density of tumour cells turns out to be governed by a hyperbolic differential equation. By neglecting, as usual, the inertia term it follows that the density satisfies a backward, or forward, diffusion equation according as the attraction, or pressure effect, prevails. Uniqueness of the solution to the backward equation is investigated and a family of solutions is described. An estimate is given for the growth rate of a tumour profile.  相似文献   

14.
The wave equation model, originally developed to solve the advection–diffusion equation, is extended to the multidimensional transport equation in which the advection velocities vary in space and time. The size of the advection term with respect to the diffusion term is arbitrary. An operator-splitting method is adopted to solve the transport equation. The advection and diffusion equations are solved separate ly at each time step. During the advection phase the advection equation is solved using the wave equation model. Consistency of the first-order advection equation and the second-order wave equation is established. A finite element method with mass lumping is employed to calculate the three-dimensional advection of both a Gaussian cylinder and sphere in both translational and rotational flow fields. The numerical solutions are accurate in comparison with the exact solutions. The numerical results indicate that (i) the wave equation model introduces minimal numerical oscillation, (ii) mass lumping reduces the computational costs and does not significantly degrade the numerical solutions and (iii) the solution accuracy is relatively independent of the Courant number provided that a stability constraint is satisfied. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
A discussion is presented on the existence of a diffusion velocity for the vorticity vector that satisfies extensions of the Helmholtz vortex laws in a three-dimensional, incompressible, viscous fluid flow. A general form for the diffusion velocity is derived for a complex-lamellar vorticity field that satisfies the property that circulation is invariant about a region that is advected with the sum of the fluid velocity and the diffusion velocity. A consequence of this property is that vortex lines will be material lines with respect to this combined velocity field. The question of existence of diffusion velocity for a general three-dimensional vorticity field is shown to be equivalent to the question of existence of solutions of a certain Fredholm equation of the first kind. An example is given for which it is shown that a diffusion velocity satisfying this property does not, in general, exist. Properties of the simple expression for diffusion velocity for a complex-lamellar vorticity field are examined when applied to the more general case of an arbitrary three-dimensional flow. It is found that this form of diffusion velocity, while not satisfying the condition of circulation invariance, nevertheless has certain desirable properties for computation of viscous flows using Lagrangian vortex methods. The significance and structure of the noncomplex-lamellar part of the viscous diffusion term is examined for the special case of decaying homogeneous turbulence.  相似文献   

16.
We construct exact solutions to an unusual nonlinear advection–diffusion equation arising in the study of Taylor–Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave ansatz. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions (i.e., non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approximations of the governing partial differential equation of electromigration dispersion.  相似文献   

17.
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion equation. In this paper, we consider situations in which the equilibrium distribution function is a heavy-tailed distribution with infinite variance. We then show that for an appropriate time scale, the small mean free path limit gives rise to a fractional diffusion equation.  相似文献   

18.
In this paper, we present a conservative, positivity‐preserving, high‐resolution nonlinear ALE‐flux‐corrected transport (FCT) scheme for reactive transport models in moving domains. The mathematical model is a convection–diffusion equation with a nonlinear flux equation on the moving channel wall. The reactive transport is assumed to have dominant Péclet and Damköhler numbers, a phenomenon that often results in non‐physical negative solutions. The scheme presented here is proven to be mass conservative in time and positive at all times for a small enough Δt. Reactive transport examples are simulated using this scheme for its validation, to show its convergence, and to compare it against the linear ALE‐FCT scheme. The nonlinear ALE‐FCT is shown to perform better than the linear ALE‐FCT schemes for large time steps. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A numerical analysis is given for the application of streamwise diffusion to high-intensity flows with marginal spatial resolution. Terms are added to the momentum equation which are similar to those used in the Petrov-Galerkin, Taylor-Galerkin and balancing tensor diffusivity methods. Values for the streamwise viscosity are obtained from mesh refinement studies. An illustration is given for the time-dependent free convection of a liquid metal in a cavity with differentially heated sided walls. The spatial problem is solved with the Galerkin finite element method and the time integration is performed with the backward Euler method. Solution quality and computation time are compared for results with and without added streamwise diffusion. For the cases presented, streamwise diffusion eliminates spurious oscillations and saves computation time without compromising the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号