首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discrete dispersion of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) have been effectively wetted and dispersed in saturated sodium hydroxide (NaOH) alcohol-water solutions with little surface damage or shortening of the tubes; the treated material was dissolvable as individual tubes in many common organic solvents.  相似文献   

2.
The glass-transition temperatures (Tg's) of nanocomposites of polystyrene (PS) and single-walled carbon nanotubes were measured in the bulk and in thin films with differential scanning calorimetry and spectroscopic ellipsometry, respectively. The bulk Tg of the nanocomposites increased by approximately 3 °C and became much broader than that of PS. For the nanocomposite films thinner than 45 nm, Tg decreased with decreasing film thickness [i.e., ΔTg(nano) < 0]. This phenomenon also occurred in thin PS films, the magnitude of the depression in PS [ΔTg(PS)] being somewhat larger. The film thickness dependence and the differences in the magnitude of ΔTg in the two systems were examined in light of current theory, and a quantitative comparison was made. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3339–3345, 2003  相似文献   

3.
As-synthesized single-walled carbon nanotubes (SWNTs) are bundled mixtures of different species. The current challenge in the field of carbon nanotube research lies in the processing and separation of SWNTs, which first require efficient dispersion of individual SWNTs in solvents. We report DNA-mimicking polysoap surfactants that disperse SWNTs in aqueous solutions more effectively than DNA. The polysoaps are synthesized by functionalizing the side chain of poly(styrene-alt-maleic acid) with aminopyrene. The synthetic nature of the polysoap opens a new approach to further optimization of not only SWNT dispersion efficiency but also multi-functional SWNT dispersing surfactant.  相似文献   

4.
The interactions of a series of poly(3-decylthiophene)-block-polydimethylsiloxanes (P3DT-b-PDMS) with single-walled carbon nanotubes (SWNTs) are investigated. The formation of supramolecular complexes of P3DT-b-PDMS with SWNTs is studied in THF, toluene, xylenes, and CHCl3, and the resulting complexes are characterized by UV-Vis-NIR absorption and fluorescence spectroscopy. The P3DT-b-PDMS-SWNT and P3DT-SWNT complexes are further incorporated into a commercially available silicone rubber formulation. Percolation thresholds of <0.02% (P3DT-b-PDMS-SWNT) and <0.05% (P3DT-SWNT) are measured. A decrease in the percolation threshold when using the block copolymer for nanotube dispersion is observed, suggesting that the presence of a covalently-linked PDMS block improves SWNT distribution in the silicone elastomer and allows a percolation network to form at low SWNT loadings. In addition, it is found that entanglement of the silicone block of P3DT-PDMS with bulk silicones results in anchoring of the nanotubes within the composite, and leads to reversible conductivity changes upon repeated stretching and relaxation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 265–273  相似文献   

5.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

6.
Palladium (Pd) nanoparticles were electrochemically dispersed on single-walled carbon nanotubes (SWNTs) by electroreduction of octahedral Pd(IV) complex formed on the SWNT surface. The structure and nature of the resulting Pd-SWNT composites were characterized by transmission electron microscopy and X-ray diffraction. The electrocatalytic properties of the Pd/SWNT electrode for hydrazine oxidation have been investigated by cyclic voltammetry; high electrocatalytic activity of the Pd/SWNT electrode can be observed. This may be attributed to the high dispersion of palladium catalysts and the particular properties of SWNT supports. The results imply that the Pd-SWNT composite has good potential applications in fuel cells.  相似文献   

7.
Single-walled carbon nanotubes were oxidized by a technique previously developed for the oxidation of graphite to graphite oxide (GO). This process involves treatment with concentrated H(2)SO(4) containing (NH(4))(2)S(2)O(8) and P(2)O(5), followed by H(2)SO(4) and KMnO(4). Oxidation results in complete exfoliation of nanotube ropes to yield individual oxidized tubes that are 40-500 nm long. The C:O:H atomic ratio of vacuum-dried oxidized nanotubes is approximately 2.7:1.0:1.2. XPS and IR spectra show evidence for surface O-H, C=O, and COOH groups. The oxidized nanotubes slowly form viscous hydrogels at unusually low concentration (>or=0.3 wt %), and this behavior is attributed to the formation of a hydrogen-bonded nanotube network. The oxidized tubes bind readily to amine-coated surfaces, on which they adsorb as smooth and dense monolayer films. Thin films of the oxidized nanotubes show ohmic current-voltage behavior, with resistivities in the range of 0.2-0.5 Omega-cm.  相似文献   

8.
Superoleophobic surfaces were demonstrated on perfluorosilane-rendered titania (TiO(2))/single-walled carbon nanotube (SWNT) composite coatings. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that SWNTs play a key role in the formation of overhanging structures and the nanoscale roughness on the coating surface, which compose the two critical morphologic factors for a superoleophobic surface. The wettability conversion from superoleophobic to superhydrophilic of the composite coatings was realized by the gradual decomposition of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) on the coating surface using UV irradiation. Contact angle measurement on both smooth TiO(2) surface and rough composite coating surface under different UV irradiation time revealed that the wetting behavior of the liquids on the composite coating surface passes from the Cassie to the Wenzel and finally to the inversed-Cassie regime. Different liquids show different irradiation time for the wetting state change. By controlling the UV irradiation dose, liquids with surface tension difference smaller than 5 mN/m can exist in completely converse wetting states on the same coating surface, that is, superphobic for one liquid while superphilic for another with lower surface tension. Mixed organic liquids with different surface tension can be completely separated through a coated grid using this wettability tuning technique.  相似文献   

9.
One-step diameter-selective dispersion of HiPco single-walled carbon nanotubes has been accomplished through noncovalent complexation of the nanotubes with a water-soluble, biocompatible polymer chitosan at room temperature.  相似文献   

10.
The filling of carbon nanotubes, which vary in diameter and morphology, is directly observed by molecular dynamics computer simulation with a potential model which thermodynamically favors a four-coordinate bulk crystal structure. Inorganic nanotube (INT) structures form which are based on percolating hexagonal nets. For small carbon nanotube diameters the filling is shown to proceed via an "internal wetting" mechanism, which depends on the internal carbon nanotube area rather than the free volume. Both single- and double-walled INTs are predicted to form. The atomistic formation mechanisms are discussed and an intermediate structure identified. The INT structures, including the observed intermediate, are discussed by reference to a simple energy landscape. The formation energetics are discussed in terms of a simple analytical model which combines the INT strain energy and the tube-tube interactions. An effective phase diagram, which predicts the INT morphologies as a function of carbon nanotube diameter, is derived and discussed with respect to the analytical model.  相似文献   

11.
Combinations of different aromatic polymers and organic solvents have been studied as dispersing agents for preparing single-walled carbon nanotubes solutions, using optical absorbance, photoluminescence-excitation mapping, computer modeling, and electron microscopic imaging to characterize the solutions. Both the polymer structure and solvent used strongly influence the dispersion of the nanotubes, leading in some cases to very high selectivity in terms of diameter and chiral angle. The highest selectivities are observed using toluene with the rigid polymers PFO-BT and PFO to suspend isolated nanotubes. The specific nanotube species selected are also dependent on the solvent used and can be adjusted by the use of THF or xylene. Where the structure has more flexible conformations, the polymers are shown to be less selective but show an enhanced overall solubilization of nanotube material. When chloroform is used as the solvent, there is a large increase in the overall solubilization, but the nanotubes are suspended as bundles rather than as isolated tubes which leads to a quenching of their photoluminescence.  相似文献   

12.
A TTFV-phenylacetylene folding polymer was synthesized to exhibit the property of reversibly dispersing and releasing single-walled carbon nanotubes in organic solvents under the control of redox or pH stimuli.  相似文献   

13.
Well-dispersed multiwalled carbon nanotube (MWNT)/polystyrene composites have been prepared. Transmission and scanning electron microscopy were employed to observe the distribution of the MWNTs in the composites in a microscopic scale, indicating a nanotube network formed in the matrix. The dispersion of the nanotubes in the polymer was monitored by oscillatory rheology. It was found that the addition of MWNTs in the polymer had a drastic influence on the rheological behavior of the composites. As the MWNT loading increased, Newtonian behavior disappeared at low frequency, suggesting a transition from liquid-like to solid-like viscoelastic behavior. A more homogeneous dispersion or a greater loading of the nanotubes in the matrix produced stronger solid-like and nonterminal behavior, and the composites exhibited less temperature dependence at elevated temperature, compared to the matrix melt.  相似文献   

14.
Here, we investigated the lithium insertion/extraction mechanism in single-walled carbon nanotubes (SWNTs) based both on the empty SWNTs and filled SWNTs, including ferrocene-filled SWNTs (Fc@SWNTs) and C60-filled SWNTs (C60@SWNTs). SWNTs, C60@SWNTs and Fc@SWNTs were systematically investigated as anode materials for Li-ion batteries. The electrochemical performance of the C60@SWNT electrode was slightly better than that of the SWNTs, and the reversible capacity of Fc@SWNTs per unit weight was ~1.7 times greater than that of the empty SWNTs due to its special tube internal structure. It was proved that the dominant reversible sites for lithium storage in empty SWNTs are the trigonal interstitial channels. Meanwhile, lithium can reversibly insert or extract the inner channels of the tubes after doping with ferrocene; the reversible capacity presented in the inner channels of Fc@SWNTs is about Li1.13C6.  相似文献   

15.
A CO(2)-responsive dispersant, N,N-dimethyl-N'-(pyren-1-ylmethyl) acetimidamidinium (PyAH(+)), which bears both a pyrene moiety and an amidinium cation, has been successfully synthesized. Through strong π-π interaction between the pyrene moiety and single-walled carbon nanotubes (SWNTs), we have demonstrated that PyAH(+) can be modified onto SWNT surfaces to promote the dispersion of SWNTs in water. Furthermore, taking advantage of gas triggered interconversions between the amidinium cation and amidine, reversible control on the solubility of SWNTs has been achieved simply through alternated bubbling of CO(2) and Ar. This work has demonstrated a new method for controlled dispersion and aggregation of SWNTs, and it may contribute to the development of gas responsive carbon materials.  相似文献   

16.
《Chemical physics letters》2001,331(1-2):27-32
Composite materials, based on single-walled carbon nanotubes and a poly(p-phenylene vinylene) derivative, show an interaction between the components capable of solubilising the nanotubes, which has not been otherwise achieved. Here these materials are characterised by electron microscopy, and optical and vibrational spectroscopy. The spectroscopic behaviour of the polymer is seen to be dramatically affected, which is attributed to conformational changes due to the effect of the nanotubes.  相似文献   

17.
Protein-assisted solubilization of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We report a simple method that uses proteins to solubilize single-walled carbon nanotubes (SWNTs) in water. Characterization by a variety of complementary techniques including UV-Vis spectroscopy, Raman spectroscopy, and atomic force microscopy confirmed the dispersion at the individual nanotube level. A variety of proteins differing in size and structure were used to generate individual nanotube solutions by this noncovalent functionalization procedure. Protein-mediated solubilization of nanotubes in water may be important for biomedical applications. This method of solubilization may also find use in approaches for controlling the assembly of nanostructures, and the wide variety of functional groups present on the adsorbed proteins may be used as orthogonal reactive handles for the functionalization of carbon nanotubes.  相似文献   

18.
��־ɽ 《高分子科学》2012,30(3):405-414
Two kinds of polyfluorenes bearing two lateral pyrene terminated alkyl chains and two alkyl chains per repeating unit were synthesized by Suzuki polycondensation and used to disperse single-walled carbon nanotubes (SWCNT) in organic solvents.Stable polymer-SWCNT complex can be formed via the multiva  相似文献   

19.
Cartilage is a connective tissue with a slow healing rate due to lack in blood circulation and slow metabolism. Designing tissue engineering scaffolds modified based on its specific features can assist its natural regeneration process. In this study, the chitosan-gelatin/single-walled carbon nanotubes functionalized by COOH (SWNTs-COOH) nanocomposite scaffolds were fabricated through electrospinning. The effect of each component and different duration of cross-linking were assessed in terms of morphology, porosity, chemical structure, thermal behavior, mechanical properties, wettability, biodegradability, and in vitro cell culture study. Adding SWNTs-COOH decreased fiber diameter, water contact angle and degradation rate while increased tensile strength, hydrophilicity, stability and cell viability, due to their high intrinsic electrical conductivity, and mechanical properties and the presence of COOH functional groups in its structure. All the sample presented a porosity percentage of more than 80%, which is essential for tissue engineering scaffolds. The presence SWNTs-COOH did not have any adverse effect on cytocompatibility. The optimal cross-linking time increased the stability of the scaffolds in PBS. It can be concluded that the chitosan-gelatin/1wt% SWNTs-COOH scaffold can be appropriate for cartilage tissue engineering applications.  相似文献   

20.
The vacuum space inside carbon nanotubes offers interesting possibilities for the inclusion, transportation, and functionalization of foreign molecules. Using first-principles density functional calculations, we show that linear carbon-based chain molecules, namely, polyynes (C(m)H(2), m = 4, 6, 10) and the dehydrogenated forms C(10)H and C(10), as well as hexane (C(6)H(14)), can be spontaneously encapsulated in open-ended single-walled carbon nanotubes (SWNTs) with edges that have dangling bonds or that are terminated with hydrogen atoms, as if they were drawn into a vacuum cleaner. The energy gains when C(10)H(2), C(10)H, C(10), C(6)H(2), C(4)H(2), and C(6)H(14) are encapsulated inside a (10,0) zigzag-shaped SWNT are 1.48, 2.04, 2.18, 1.05, 0.55, and 1.48 eV, respectively. When these molecules come inside a much wider (10,10) armchair SWNT along the tube axis, they experience neither an energy gain nor an energy barrier. They experience an energy gain when they approach the tube walls inside. Three hexane molecules can be encapsulated parallel to each other (i.e., nested) inside a (10,10) SWNT, and their energy gain is 1.98 eV. Three hexane molecules can exhibit a rotary motion. One reason for the stability of carbon chain molecules inside SWNTs is the large area of weak wave function overlap. Another reason concerns molecular dependence, that is, the quadrupole-quadrupole interaction in the case of the polyynes and electron charge transfer from the SWNT in the case of the dehydrogenated forms. The very flat potential surface inside an SWNT suggests that friction is quite low, and the space inside SWNTs serves as an ideal environment for the molecular transport of carbon chain molecules. The present theoretical results are certainly consistent with recent experimental results. Moreover, the encapsulation of C(10) makes an SWNT a (purely carbon-made) p-type acceptor. Another interesting possibility associated with the present system is the direction-controlled transport of C(10)H inside an SWNT under an external field. Because C(10)H has an electric dipole moment, it is expected to move under a gradient electric field. Finally, we derive the entropies of linear chain molecules inside and outside an open-ended SWNT to discuss the stability of including linear chain molecules inside an SWNT at finite temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号