首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Living radical polymerization of n‐butyl acrylate was achieved by single electron transfer/degenerative‐chain transfer mediated living radical polymerization in water catalyzed by sodium dithionate. The plots of number–average molecular weight versus conversion and ln[M]0/[M] versus time are linear, indicating a controlled polymerization. This methodology leads to the preparation of α,ω‐di(iodo) poly (butyl acrylate) (α,ω‐di(iodo)PBA) macroinitiators. The influence of polymerization degree ([monomer]/[initiator]), amount of catalyst, concentration of suspending agents and temperature were studied. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV), and refractive index (RI). The methodology studied in this work represents a possible route to prepare well‐tailored macromolecules made of butyl acrylate in an environmental friendly reaction medium. Moreover, such materials can be subsequently functionalized leading to the formation of different block copolymers of composition ABA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2809–2825, 2006  相似文献   

2.
A new di‐tert‐butyl acrylate (diTBA) monomer for controlled radical polymerization is reported. This monomer complements the classical use of tert‐butyl acrylate (TBA) for synthesis of poly(acrylic acid) by increasing the density of carboxylic acids per repeat unit, while also increasing the flexibility of the carboxylic acid side‐chains. The monomer is well behaved under Cu(II)‐mediated photoinduced controlled radical polymerization and delivers polymers with excellent chain‐end fidelity at high monomer conversions. Importantly, this new diTBA monomer readily copolymerizes with TBA to further the potential for applications in areas such as dispersing agents and adsorbents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 801–807  相似文献   

3.
Controlled free‐radical copolymerization of styrene (S) and butyl acrylate (BA) was achieved by using a second‐generation nitroxide, Ntert‐butyl‐N‐[1‐diethylphosphono‐(2,2‐dimethylpropyl)] nitroxide (DEPN), and 2,2‐azobisisobutyronitrile (AIBN) at 120 °C. The time‐conversion first‐order plot was linear, and the number‐average molecular weight increased in direct proportion to the ratio of monomer conversion to the initial concentration, providing copolymers with low polydispersity. The monomer reactivity ratios obtained were rS = 0.74 and rBA = 0.29, respectively. To analyze the convenience of applying the Mayo–Lewis terminal model, the cumulative copolymer composition against conversion and the individual conversion of each monomer as a function of copolymerization time were studied. The theoretical values of the propagating radical concentration ratio were also examined to investigate the copolymerization rate behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4168–4176, 2004  相似文献   

4.
Polydisperse hyperbranched polyesters were modified for use as novel multifunctional reversible addition–fragmentation chain‐transfer (RAFT) agents. The polyester‐core‐based RAFT agents were subsequently employed to synthesize star polymers of n‐butyl acrylate and styrene with low polydispersity (polydispersity index < 1.3) in a living free‐radical process. Although the polyester‐core‐based RAFT agent mediated polymerization of n‐butyl acrylate displayed a linear evolution of the number‐average molecular weight (Mn) up to high monomer conversions (>70%) and molecular weights [Mn > 140,000 g mol?1, linear poly(methyl methacrylate) equivalents)], the corresponding styrene‐based system reached a maximum molecular weight at low conversions (≈30%, Mn = 45,500 g mol?1, linear polystyrene equivalents). The resulting star polymers were subsequently used as platforms for the preparation of star block copolymers of styrene and n‐butyl acrylate with a polyester core with low polydispersities (polydispersity index < 1.25). The generated polystyrene‐based star polymers were successfully cast into highly regular honeycomb‐structured microarrays. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3847–3861, 2003  相似文献   

5.
The polymerization of n‐butyl acrylate in the presence of two cyclic trithiocarbonates (CTTCs) and the synthesis of multiblock poly(n‐butyl acrylate) have been investigated. The CTTCs not only can be stepwise incorporated into the polymer chain via reversible addition–fragmentation chain transfer (RAFT) but also can be polymerized into polytrithiocarbonate, which functions as a macro‐RAFT agent in turn. Through two kinds of mechanisms, multiblock poly(n‐butyl acrylate) containing narrow‐polydispersity blocks can be prepared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6600–6606, 2006  相似文献   

6.
This article reports the synthesis of atom transfer radical polymerization (ATRP) of active initiators from well‐defined silica nanoparticles and the use of these ATRP initiators in the grafting of poly(n‐butyl acrylate) from the silica particle surface. ATRP does not require difficult synthetic conditions, and the process can be carried out in standard solvents in which the nanoparticles are suspended. This “grafting from” method ensures the covalent binding of all polymer chains to the nanoparticles because polymerization is initiated from moieties previously bound to the surface. Model reactions were first carried out to account for possible polymerization in diluted conditions as it was required to ensure the suspension stability. The use of n‐butyl acrylate as the monomer permits one to obtain nanocomposites with a hard core and a soft shell where film formation is facilitated. Characterization of the polymer‐grafted silica was done from NMR and Fourier transform infrared spectroscopies, dynamic light scattering, and DSC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4294–4301, 2001  相似文献   

7.
The synthesis of macromonomers of acrylic acid was performed by telomerization in a three‐step process. The first step was the telomerization of tert‐butyl acrylate in the presence of thioglycolic acid. Different molecular weights were obtained with different ratios of the monomer to the transfer agent. Good control of the molecular weights and architectures of the oligomers (e.g., the presence of an acid function on the chain end) was observed. The transfer constant of tert‐butyl acrylate with thioglycolic acid was assessed (chain‐transfer constant = 0.6). In the second step, the terminal unsaturation of the oligomers was obtained by the reaction of the terminal acid groups with 2‐isocyanatoethyl methacrylate to yield the macromonomers of tert‐butyl acrylate. In the last step, the tert‐butyl acrylate groups were hydrolyzed in the presence of trifluoroacetic acid at room temperature. The macromonomers were copolymerized with styrene to obtain graft copolymers, and the reactivity ratios were evaluated. Finally, the copolymers were characterized with surface electron microscopy and atom force microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 395–415, 2007  相似文献   

8.
Automated parallel synthesizers provide fast and comparable screening of different polymerization parameters under similar conditions. In addition, these robotic systems eliminate handling errors, which may affect the results of a kinetic experiment more than the effect of an important parameter. The polymerization temperature and N,Ntert‐butyl‐N‐[1′‐diethylphosphono‐2,2′‐dimethylpropyl]nitroxide concentration were optimized for the homopolymerization of both styrene and tert‐butyl acrylate to improve the control over the polymerization while reasonable polymerization rates were retained. Subsequently, polystyrene and poly(tert‐butyl acrylate) macro initiators were synthesized according to the knowledge obtained from the screening results. These macroinitiators were used for the preparation of block copolymers consisting of styrene and tert‐butyl acrylate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6202–6213, 2006  相似文献   

9.
Sodium dithionite in the presence of NaHCO3 in water acts as a single‐electron‐transfer agent and facilitates the single‐electron‐transfer/degenerative‐chain‐transfer mediated living radical polymerization (SET–DTLRP) of acrylates initiated with iodoform at room temperature. The resulting α,ω‐di(iodo)polyacrylates can be used as macroinitiators for the SET–DTLRP of other acrylates. Ultrahigh‐molar‐mass poly(tert‐butyl acrylate) can be synthesized via the SET–DTLRP of tert‐butyl acrylate and has a very low weight‐average molecular weight/number‐average molecular weight ratio of 1.15. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2178–2184, 2005  相似文献   

10.
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25co‐poly(vinylbenzophenone)0.75]115block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006  相似文献   

11.
A series of well‐defined amphiphilic graft copolymers, containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(butyl acrylate) side chains, were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) without any postpolymerization functionality modification followed by selective acidic hydrolysis of poly(tert‐butyl acrylate) backbone. tert‐Butyl 2‐((2‐bromopropanoyloxy)methyl)‐acrylate was first homopolymerized or copolymerized with tert‐butyl acrylate by RAFT in a controlled way to give ATRP‐initiation‐group‐containing homopolymers and copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) and their reactivity ratios were determined by Fineman‐Ross and Kelen‐Tudos methods, respectively. The density of ATRP initiation group can be regulated by the feed ratio of the comonomers. Next, ATRP of butyl acrylate was directly initiated by these macroinitiators to synthesize well‐defined poly(tert‐butyl acrylate)‐g‐poly(butyl acrylate) graft copolymers with controlled grafting densities via the grafting‐from strategy. PtBA‐based backbone was selectively hydrolyzed in acidic environment without affecting PBA side chains to provide poly(acrylic acid)‐g‐poly(butyl acrylate) amphiphilic graft copolymers. Fluorescence probe technique was used to determine the critical micelle concentrations in aqueous media and micellar morphologies are found to be spheres visualized by TEM. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2622–2630, 2010  相似文献   

12.
Poly(2‐hydroxyethyl acrylate)–poly(n‐butyl acrylate) block copolymers were synthesized with the reversible addition–fragmentation chain transfer (RAFT) process. The block copolymers were synthesized successfully with either poly(2‐hydroxyethyl acrylate) or poly(n‐butyl acrylate) macro‐RAFT agents. The resulting block copolymers had narrow molecular weight distributions (polydispersity index = 1.3–1.4). Copolymer self‐aggregation in water yielded micelles, with the hydrodynamic diameter (Dh) values of the aggregates dependent on the length of both blocks according to DhNBA1.17NHEA0.57, where NBA is the number of repeating units of n‐butyl acrylate and NHEA is the number of repeating units of 2‐hydroxyethyl acrylate. The micelles were subsequently stabilized via chain extension of the block copolymer with a crosslinking agent. The successful chain extension in a micellar system was confirmed by an increase in the molecular weight, which was detected with membrane osmometry. The crosslinked particles showed noticeably different aggregation behavior in diverse solvent systems. The uncrosslinked micelles formed by the block copolymer (NHEA = 260, NBA = 75) displayed a definite critical micelle concentration at 5.4 × 10?4 g L?1 in aqueous solutions. However, upon crosslinking, the critical micelle concentration transition became obscure. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2177–2194, 2006  相似文献   

13.
Three series of pressure‐sensitive adhesives were prepared with constant glass‐transition temperature, using emulsion polymerization. The monomers chosen were butyl acrylate, 2‐ethylhexyl acrylate (EHA), methyl methacrylate (MMA), and acrylic acid (AA). Within each polymer series, the proportion of AA monomer was held constant for each polymer preparation but acrylic ester monomer levels were varied. Adhesion performance was assessed by measurement of loop tack, static shear resistance, and through the construction of peel master‐curves. Peel master‐curves were generated through peel tests conducted over a range of temperatures and peel rates and through application of the time–temperature superposition principle. Bulk effects dominated by polymer zero shear viscosity change as AA and EHA levels were varied were attributed to the observed effect on static shear resistance and the horizontal displacements of peel master‐curves. Static shear resistance was found to strongly correlate with log(aC), a parameter introduced to horizontally shift peel master‐curves to form a superposed, “super master‐curve”. An interfacial interaction was proposed to account for deviations observed when loop tack was correlated with log(aC). Surface rearrangements via hydrogen bonding with the test substrate were suggested as responsible for the interfacial interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1237–1252, 2006  相似文献   

14.
A series of well‐defined amphiphilic star graft copolymers consisting of hydrophilic poly(acrylic acid) backbone and hydrophobic poly(propylene oxide) side chains were synthesized by the sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer nitroxide radical coupling (ATNRC) or single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction followed by the selective hydrolysis of poly(tert‐butyl acrylate) backbone. A Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate, was first homopolymerized via RAFT polymerization using a new star‐like chain‐transfer agent with four arms in a controlled way to give a well‐defined star‐like backbone with a narrow molecular weight distribution (Mw/Mn = 1.23). The grafting‐onto strategy was used to synthesize the well‐defined PtBA‐g‐PPO star graft copolymers with narrow molecular weight distributions (Mw/Mn = 1.14–1.25) via ATNRC or SET‐NRC reaction between the Br‐containing PtBA‐based star‐like backbone and poly(propylene oxide) with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group using CuBr/PMDETA or Cu/PMDETA as catalytic system. PAA‐g‐PPO amphiphilic star graft copolymers were obtained by the selective acidic hydrolysis of star‐like PtBA‐based backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media and brine were determined by the fluorescence probe technique. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2084–2097, 2010  相似文献   

15.
The aim of this work is to the study the influence of the isomer structures of butyl acrylate monomer on the single‐electron transfer/degenerative chain transfer mediated living radical polymerization (SET‐DTLRP). The kinetic of isobutyl acrylate is determined for the first time by SET‐DTLRP in water catalyzed by sodium dithionite. The plots of number‐average molecular weight versus conversion and ln([M]0/[M]) versus time are linear, demonstrating a controlled polymerization. The influence of the isomer t‐butyl, i‐butyl, and n‐butyl on the kinetics, properties, and stereochemistry of the reactions was assessed. To the best of our knowledge, there is no previous report dealing with the synthesis of PiBA by any LRP approach in aqueous medium. The results presented in this work suggest that the stability provided by the acrylate side group has an important influence in the polymerization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6542–6551, 2008  相似文献   

16.
Atom transfer radical polymerization (ATRP) of acrylates in ionic liquid, 1‐butyl‐3‐methylimidazolium hexaflurophospate, with the CuBr/CuBr2/amine catalytic system was investigated. Sequential polymerization was performed by synthesizing AB block copolymers. Polymerization of butyl acrylate (monomer that is only partly soluble in an ionic liquid forming a two‐phase system) proceeded to practically quantitative conversion. If the second monomer (methyl acrylate) is added at this stage, polymerization proceeds, and block copolymer formed is essentially free of homopolymer according to size exclusion chromatographic analysis. The number‐average molecular weight of the copolymer is slightly higher than calculated, but the molecular weight distribution is low (Mw/Mn = 1.12). If, however, methyl acrylate (monomer that is soluble in an ionic liquid) is polymerized at the first stage, then butyl acrylate in the second‐stage situation is different. Block copolymer free of homopolymer of the first block (with Mw/Mn = 1.13) may be obtained only if the conversion of methyl acrylate at the stage when second monomer is added is not higher than 70%. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that irreversible deactivation of growing macromolecules is significant for methyl acrylate polymerization at a monomer conversion above 70%, whereas it is still not significant for butyl acrylate even at practically quantitative conversion. These results show that ATRP of butyl acrylate in ionic liquid followed by addition of a second acrylate monomer allows the clean synthesis of block copolymers by one‐pot sequential polymerization even if the first stage is carried out to complete conversion of butyl acrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2799–2809, 2002  相似文献   

17.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Novel phosphorus‐containing acrylate monomers were synthesized by two different routes. The first involved the reaction of ethyl α‐chloromethyl acrylate and t‐butyl α‐bromomethyl acrylate with diethylphosphonoacetic acid. The monomers were bulk‐ and solution‐polymerized at 56–64 °C with 2,2′‐azobisisobutyronitrile. The ethyl ester monomer showed a high crosslinking tendency under these conditions. The selective hydrolysis of the ethyl ester phosphonic ester compound was carried out with trimethylsilyl bromide, producing a phosphonic acid monomer. In the second route, ethyl α‐hydroxymethyl acrylate and t‐butyl α‐hydroxymethyl acrylate were reacted with diethylchlorophosphate. The bulk homopolymerization and copolymerization of these monomers with methyl methacrylate and 2,2′‐azobisisobutyronitrile gave soluble polymers. The attempted hydrolysis of the monomers was unsuccessful because of the loss of the diethylphosphate group. The relative reactivities of the monomers in the photopolymerizations were also compared. The ethyl α‐hydroxymethyl acrylate/diethylphosphonic acid monomer showed higher reactivity than the other monomers, which may explain the crosslinking during the polymerization of this monomer. The reactivities of other derivatives were similar, but the rates of polymerization were slow in comparison with those of methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3221–3231, 2002  相似文献   

19.
A series of forced gradient copolymers with different controlled distribution of monomer units along the copolymer backbone were successfully prepared by atom transfer radical polymerization in miniemulsion. The newly developed initiation technique, known as activators generated by electron transfer, was beneficial for forced gradient copolymers preparation because all polymer chains were initiated within the miniemulsion droplets and the miniemulsion remained stable throughout the entire polymerization. Various monomer pairs with different reactivity ratios were examined in this study, including n‐butyl acrylate/t‐butyl acrylate, n‐butyl methacrylate/methyl methacrylate, and n‐butyl acrylate/styrene. In each case, the added monomer diffused across the aqueous suspending medium and gradient copolymers with different forced distributions of comonomer units along the polymer backbone were obtained. The shape of the gradient along the backbone of the copolymers was influenced by the molar ratio of the monomers, the reactivity ratio of the comonomers as well as the feeding rate. The shape of the gradient was also affected by the relative hydrophobicities of the comonomers. Copolymerizations exhibited good control for all feeding rates and comonomer feeding ratios, as evidenced by narrow molecular weight distribution (Mw/Mn = 1.20–1.40) and molecular weight increasing smoothly with polymer yield, indicating high initiation efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1413–1423, 2007  相似文献   

20.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号