首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel title ruthenium(II) complex, [RuCl(C10H14)(C10H10N3OS)], was synthesized from the reaction of 1,2,4‐triazepine, a new class of bidentate ligands, with [Ru(p‐cymene)Cl2]2. The 1,2,4‐triazepine ligand is coordinated to the metal centre through the N‐4 and S atoms, forming a four‐membered chelate ring. This is the first structural example of a transition metal complex containing a 1,2,4‐triazepine ligand.  相似文献   

2.
The title compound, [Cd2(SO3)2(C18H12N6)2]·8H2O, is a dimer built up around a symmetry center, where the sulfite anion displays a so far unreported coordination mode in metal‐organic complexes; the anion binds as a μ2‐sulfite‐κ4O,O′:O′,O′′ ligand to two symmetry‐related seven‐coordinate CdII cations, binding through its three O atoms by way of two chelate bites with an O atom in common, which acts as a bridge. The cation coordination is completed by a 2,4,6‐tri‐2‐pyridyl‐1,3,5‐triazine ligand acting in its usual tridentate mode.  相似文献   

3.
The title compound, [Cd(S2O3)(C16H16N2)(H2O)]n, presents a polymeric one‐dimensional structure running along the P21/c glide direction, with elementary units defined by six‐coordinate CdII atoms bonded to three symmetry‐related thio­sulfate groups, a bidentate tetra­methyl­phenanthroline ligand and one aqua ligand. The bridging thio­sulfates bind metal centers through two different sequences, viz. Cd—S—Cd′ and Cd′—S′—S′—O′—Cd, defining a closed six‐membered ring. Individual chains are held together viaπ–π inter­actions to generate two‐dimensional networks parallel to the (100) plane. These, in turn, are connected by much weaker van der Waals inter­actions.  相似文献   

4.
In the title compound, [Pd(C6H5)(C10H11O2S)(C18H15P)]·C4H8O, an iso­propyl­thio­benzoate ligand is coordinated in a bidentate fashion to the central Pd atom through the O and S atoms. The square‐planar geometry of the Pd atom is completed by a phenyl ligand and a tri­phenyl­phosphine group but is distorted by the bidentate ligand, which forms a six‐membered chelate ring. This ring deviates strongly from planarity, which is illustrated by the plane through the phenyl portion of the chelate ring forming a dihedral angle of 62.3 (1)° with the coordination plane.  相似文献   

5.
The palladium(II) centre in the title compound, [PdCl2(C21H18N2OS)], is coordinated to the pyridyl N atom and to the thia­zolidinone S atom of the 5‐benzyl‐3‐phenyl‐2‐(2‐pyridyl)­thia­zolidin‐4‐one ligand, resulting in a five‐membered chelate ring. Two cis‐chloro ligands complete the square‐planar coordination environment of the metal. Although the geometry at the Pd centre is essentially planar, the N—Pd—S bite angle of 85.20 (8)° causes deviations in the cis angles from the ideal value of 90°. Opposite enantiomers form one‐dimensional chains in the cell via a short S?O intermolecular interaction.  相似文献   

6.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

7.
Neutral 4‐iodo‐N‐ethylimidazole 3 oxidatively adds to [Pt(PPh3)4] to give, in the presence of different tetraalkylammonium salts, complexes trans‐[ 4 ], trans‐[ 5 ], and trans‐[ 6 ] containing an anionic C4‐bound heterocycle with an unsubstituted ring‐nitrogen atom. Complex trans‐[ 4 ] reacts with the proton source NH4I under protonation of the ring‐nitrogen atom to produce complex trans‐[ 7 ]I which bears an NH,NR‐substituted aNHC ligand. The reaction of trans‐[ 4 ] with CH3I yields the complex trans‐[ 8 ]I which has a classical aNHC ligand with two alkylated ring‐nitrogen atoms.  相似文献   

8.
The title compound, [Ru(NO2)2(OH)(C10H8N2S)(NO)], is the main product of the reaction between RuCl3 and dps (dps is 2,2′‐dipyridyl sulfide, C10H8N2S) in ethanol–water at room temperature followed by reaction with NaNO2 at a higher temperature. The Ru atom has a distorted octahedral coordination geometry with the dps mol­ecule behaving as an N,N′‐bidentate ligand. The six‐membered chelate ring adopts a boat conformation.  相似文献   

9.
The title compound, [CuBr(C6H7NO)2]Br·H2O, is an ionic mononuclear complex in which the [CuBr(C6H7NO)2]+ cation possesses distorted square‐pyramidal geometry. The CuII centre is coordinated by two neutral 2‐(pyridin‐2‐yl)methanol (2‐pyMeOH) ligands and a terminal bromide ligand. The 2‐pyMeOH ligands are coordinated in a bidentate chelating manner through the pyridine N and hydroxy O atoms, forming a five‐membered chelate ring with the CuII centre. The planes of the pyridine rings are twisted by 58.71 (14)° with respect to each other. The charge is balanced by a noncoordinating bromide anion which, together with a solvent water molecule, links the components through hydrogen bonds into infinite chains propagating along the a axis. The mononuclear cations appear to associate in pairs through weak interactions between the metal atom of one cation and the halogen atom of an adjacent cation.  相似文献   

10.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

11.
For a long time, the cobalt(II) complex ([Co(napy)4](ClO4)2) (napy=1, 8‐naphthyridine) has been considered as an eight‐coordinate complex without any structural proof. After careful considerations, two complexes [Co(napy)2Cl2] ( 1 ) and [Co(napy)4](ClO4)2 ( 2 ) based on the bidentate ligand napy were synthesized and structurally characterized. X‐ray single‐crystal structural determination showed that the cobalt(II) center in [Co(napy)2Cl2] ( 1 ) is four‐coordinate with a tetrahedral geometry (Td), while [Co(napy)4](ClO4)2 ( 2 ) is seven‐coordinate rather than eight‐coordinate with a capped trigonal prism geometry (C2v). Direct‐current (dc) magnetic data revealed that complexes 1 and 2 possess positive zero‐field splitting (ZFS) parameters of 11.08 and 25.30 cm?1, respectively, with easy‐plane magnetic anisotropy. Alternating current(ac) susceptibility measurements revealed that both complexes showed slow magnetic relaxation behaviour. Theoretical calculations demonstrated that the presence of easy‐plane magnetic anisotropy (D>0) for complexes 1 and 2 is in agreement with the experimental data. Furthermore, these results pave the way to obtain four‐coordinate and seven‐coordinate cobalt(II) single‐ion magnets (SIMs) by using a bidentate ligand.  相似文献   

12.
Synthesis and characterization of the ligand, 10-(α-hexadecylcarboxymethyl)- 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (H4L), and its Gd(Ⅲ) chelate are described. Protonation constants for H4L ( lg Ki^H = 10.52, 9.45,4.74, 4.10) and the stability constant for GdL^-(lg KGdL^-=24.50) were determined by potentiometric titrations.The results obtained show that the ligand still maintains the strong chelating properties of the parent DOTA(1,4,7,10-tetraazacyclododecane-N,N‘,N“N′“-tetraacetic acid) after introduction of a linear chain hexadecyl group at the acetic side chain of DOTA, and its basicity is not significantly altered.  相似文献   

13.
A novel coordination polymer, [Ag4ppdc)(H2bpdc)(Hbpdc)2] (bpdc = 2,2′‐bipyridyl‐3,3′‐dicarboxylate), was hydrothermally synthesized at 403 K and structurally characterized by single crystal X‐ray diffraction analysis. The compound crystalizes in the monoclinic space group C2/c with a=1.9516(4) nm, b=1.9503(4) nm. c=1.2566(3) nm, and β=112.48(3)°. In the two‐dimensional crystal structure, AgI center is coordinated, in a scarce coordination environment, double‐capped tetrahedron, by one bpdc ligand to form N‐Ag‐N chelate bond via two pyridyl N atoms, and other two bpdc ligands to form two O‐Ag‐O chelate bonds, respectively, via two carboxyl O atoms. The bpdc ligands are present in one non‐protonated form, bpdc, and two protonated forms, Hbpdc and H2bpdc, which all act as μ3‐ligand in a hexadentate fashion (N, N′; O, O′; O, O′) to coordinate with three Ag centers, respectively, through the three chelate bonds. This coordinated fashion of bpdc ligand is first found in the title compound. W‐Us‐NIR reflectance spectroscopy study revealed insulator nature for the crystal with an optical energy gap of 3.1 eV.  相似文献   

14.
In the title complex, [RuCl2(C7H7NO)(C2H6OS)2], the metal ion is at the centre of a distorted octahedral NOCl2S2 coordination sphere. The neutral 2‐acetyl­pyridine ligand binds to the metal ion through the pyridine N and carbonyl O atoms, forming a five‐membered chelate ring. The monodentate S‐coordinating di­methyl sulfoxide mol­ecules are mutually cis, and the two remaining positions in the coordination sphere are occupied by two mutually trans Cl? ions.  相似文献   

15.
In the title supramolecular complex, [Ag2Cl2(C4H5N3)(C18H15P)2]n, a one‐dimensional chain is formed by dimeric {Ag2Cl2(PPh3)2} units bridged by 2‐amino­pyrimidine moieties. The Ag atoms are four‐coordinate, with an AgCl2NP core. A crystallographic inversion centre is located in the centre of the Ag2Cl2 chelate ring, while the crystallographic twofold axis bisects the 2‐amino­pyrimidine ligand.  相似文献   

16.
A new hydrogen terminated 2,2′‐bidipyrrin ligand was prepared from a bipyrrole dialdehyde and 3,4‐diethylpyrrole by a POCl3 induced condensation and isolated as the nickel(II) chelate. Unexpectedly a side reaction occured when base‐deficient and aerobic conditions were chosen in the metalation step. This side reaction led to a novel pentapyrrolic nickel(II) complex with one externally bound pyrrole ring. Further studies showed that the reactions of 2,2′‐bidipyrrins with 3,4‐diethyl‐ or 2,3,4‐trimethylpyrrole and an oxidant resulted in a stepwise exchange of the terminal pyrrole moieties and, in the former case, the introduction of one additional pyrrole ring into one of the two meso positions of the open‐chain tetrapyrrole.  相似文献   

17.
The reaction of the newly synthesized ligand, 2‐isonicotinoyl‐N‐phenylhydrazine‐1‐carbothioamide (H3L), with acetate salt of Co (II), Cu (II),Ni (II) and Zn (II) led to isolation of four solid complexes. The ligand and complexes structure elucidation were based on elemental analyses, spectral analyses (IR, UV–Visible, 1H and13C‐NMR, MS and ESR), TGA, molar conductivity and magnetic moments measurements. The results indicated that the ligand exists in the thioketo form, while on coordination to the metal ions; it behaves as mono‐negative bidentate chelate and exists in enol form. The optical band gap measurements of the ligand and its metal complexes are in the range 3.83–4.48 eV indicating their semi‐conducting character. The cytotoxicity examination of H3L and its Zn (II) complex showed that the ligand have very strong cytotoxicity against both HCT‐116 and HEPG‐2 cell lines while, Zn (II) complex has moderate activity.  相似文献   

18.
The crystal structure of a copper(II) complex of 2‐acetylpyridine 3‐piperidylthiosemicarbazone, [Cu(Acpip)2], indicates a tridentate, monoanionic ligand (i. e., pyridine nitrogen, imine nitrogen and thiolato sulfur atoms) and a bidentate, monanionic ligand (i. e., imine nitrogen and thiolato sulfur atoms). The stereochemistry approaches square pyramidal with the bidentate ligand occupying an apical (imine nitrogen atom) and basal (thiolato sulfur atom) position. The structure of a nickel(II) complex of 1‐phenylglyoxal N(4)‐diethylthiosemicarbazone, [Ni(Pg4DE)], has a 4‐6‐5 trichelate system rather than the 5‐5‐5 system common to bis(thiosemicarbazones). Coordination of the hydrazinic nitrogen atom of the “phenyl arm” along with the thiolato sulfur atom provides the 4‐membered chelate ring.  相似文献   

19.
N‐methylimidazolidin‐4‐one organocatalysts were studied in the gas phase. Protonated and sodium‐cationized (sodiated) molecules are conveniently accessible by electrospray mass spectrometry. Protonation enables three different closed‐shell paths of ring cleavage leading to iminium ions. The fragmentation pattern is largely unaffected by exocyclic substituents and thus is valuable to characterize the substance type as N‐methylimidazolidin‐4‐ones. Sodiated species show a distinctly different fragmentation that is less useful for characterization purposes: apart from signal loss due to dissociation of Na+, the observation of benzyl radical loss is by far predominant. Only in absence of a benzyl substituent, an analogue of the third ring cleavage (loss of [C2H5NO]) is observed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Seven 2,4,6‐trisubstituted pyridine derivatives with N,N‐diethylaniline substituents at the 4‐position were synthesized, and their spectroscopic properties in the absence and presence of acid were studied. The spectral effects of protonation, molar absorptivities, pKa values, and the structural origins of the observed spectral behavior were ascertained. The pyridine nitrogen was found to be more basic than the diethylamino nitrogen atom. Protonation of the pyridine ring nitrogen is associated with the appearance of a red‐shifted intramolecular charge transfer peak in the UV‐visible spectra. Favorable color indicating properties result from electron‐donating substitution at the 2 and 6 positions of pyridine, which provide a greater absorptivity of the red‐shifted peak associated with protonation of the pyridine nitrogen. These findings will assist in the design and optimization of these compounds for ion‐indicating and pH‐sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号