首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of a photocleavable block copolymer containing an ortho‐nitrobenzyl (ONB) linker between poly(methyl methacrylate) and poly(d ‐lactide) blocks is presented here. The block copolymers were synthesized via atom transfer radical polymerization (ATRP) of MMA followed by ring‐opening polymerization (ROP) of d ‐Lactide and ROP of d ‐lactide followed by ATRP of MMA from a difunctional photoresponsive ONB initiator, respectively. The challenges and limitations during synthesis of the photocleavable block copolymers using the difunctional photoresponsive ONB initiator are discussed. The photocleavage of the copolymers occurs under mild conditions by simple irradiation with 302 nm wavelength UV light (Relative intensity at 7.6 cm: 1500 μW/cm2) for several hours. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4309–4316  相似文献   

2.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

3.
Atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) were combined to synthesize poly(?‐caprolactone‐co‐octadecyl methacrylate‐co‐dimethylaminoethyl methacrylate) copolymers possessing a triblock or random block structure. Various synthetic pathways (sequential or simultaneous approaches) were investigated for the synthesis of both copolymers. For the preparation of these copolymers, an initiator with dual functionality for ATRP/anionic ring‐opening polymerization, 2‐hydroxyethyl 2‐bromoisobutyrate, was used. Copolymers were prepared with good structural control and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.2), but one limitation was identified: the dimethylaminoethyl methacrylate (DMAEMA) block had to be synthesized after the ?‐caprolactone block. ROP could not proceed in the presence of DMAEMA because the complexation of the amine groups in poly(dimethylaminoethyl methacrylate) deactivated tin(II) hexanoate, which was used as a catalyst for ROP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1498–1510, 2005  相似文献   

4.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

6.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

7.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

8.
Living ω‐aluminum alkoxide poly‐ϵ‐caprolactone and poly‐D,L ‐lactide chains were synthesized by the ring‐opening polymerization of ϵ‐caprolactone (ϵ‐CL) and D,L ‐lactide (D,L ‐LA), respectively, and were used as macroinitiators for glycolide (GA) polymerization in tetrahydrofuran at 40 °C. The P(CL‐b‐GA) and P(LA‐b‐GA) diblock copolymers that formed were fractionated by the use of a selective solvent for each block and were characterized by 1H NMR spectroscopy and differential scanning calorimetry analysis. The livingness of the operative coordination–insertion mechanism is responsible for the control of the copolyester composition, the length of the blocks, and, ultimately, the thermal behavior. Because of the inherent insolubility of the polyglycolide blocks, microphase separation occurs during the course of the sequential polymerization, resulting in a stable, colloidal, nonaqueous copolymer dispersion, as confirmed by photon correlation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 294–306, 2001  相似文献   

9.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

10.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

11.
Diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and poly(?‐caprolactone) (PCL), poly(δ‐valerolactone) (PVL), poly(L ‐lactic acid) (PLLA), or poly(lactic‐co‐glycolic acid) (PLGA) as biodegradable polyesters were prepared to examine the phase transition of diblock copolymer solutions. MPEG–PCL and MPEG–PVL diblock copolymers and MPEG–PLLA and MPEG–PLGA diblock copolymers were synthesized by the ring‐opening polymerization of ?‐caprolactone or δ‐valerolactone in the presence of HCl · Et2O as a monomer activator at room temperature and by the ring‐opening polymerization of L ‐lactide or a mixture of L ‐lactide and glycolide in the presence of stannous octoate at 130 °C, respectively. The synthesized diblock copolymers were characterized with 1H NMR, IR, and gel permeation chromatography. The phase transitions for diblock copolymer aqueous solutions of various concentrations were explored according to the temperature variation. The diblock copolymer solutions exhibited the phase transition from gel to sol with increasing temperature. As the polyester block length of the diblock copolymers increased, the gel‐to‐sol transition moved to a lower concentration region. The gel‐to‐sol transition showed a dependence on the length of the polyester block segment. According to X‐ray diffraction and differential scanning calorimetry thermal studies, the gel‐to‐sol transition of the diblock copolymer solutions depended on their degrees of crystallinity because water could easily diffuse into amorphous polymers in comparison with polymers with a crystalline structure. The crystallinity markedly depended on both the distinct character and composition of the block segment. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5784–5793, 2004  相似文献   

12.
Novel and well‐defined amphiphilic dendrimer‐star copolymer poly(ε‐caprolactone)‐block‐(poly(2‐(2‐methoxyethoxy)ethylmethacrylate‐co‐oligo(ethylene glycol) methacrylate))2 with Y‐shaped arms were synthesized by the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The investigation of thermal properties and the analysis of crystalline morphology indicate that the high‐branched structure of dendrimer‐star copolymers with Y‐shaped arms and the presence of amorphous P(MEO2MA‐co‐OEGMA) segments together led to the complete destruction of crystallinity of the PCL segments in the dendrimer‐star copolymer. In addition, the hydrophilicity–hydrophobicity transition of the dendrimer‐star copolymer film can be achieved by altering the external temperatures. The amphiphilic copolymers can self‐assemble into spherical nanomicelles in water. Because the lower critical solution temperature of the copolymers can be adjusted by varying the ratio of MEO2MA and OEGMA, the tunable thermosensitive properties can be observed by transmittance, dynamic laser light scattering, and transmission electron microscopy (TEM). The release rate of model drug chlorambucil from the micelles can be effectively controlled by changing the external temperatures, which indicates that these unique high‐branched amphiphilic copolymers have the potential applications in biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

14.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

15.
Novel elastomeric A‐B‐A triblock copolymers were successfully synthesized in a new two‐step process: controlled ring‐opening polymerization of the cyclic ether–ester 1,5‐dioxepan‐2‐one as the amorphous middle block (B‐block) followed by addition and polymerization of the two semicrystalline L ‐lactide blocks (A‐block). A 1,1,6,6‐tetra‐n‐butyl‐1,6‐distanna‐2,5,7,10‐tetraoxacyclodecane initiator system was utilized and the reaction was performed in chloroform at 60 °C. A good control of the synthesis was obtained, resulting in well defined triblock copolymers. The molecular weight and chemical composition were easily adjusted by the monomer‐to‐initiator ratio. The triblock copolymers formed exhibited semicrystallinity up to a content of 1,5‐dioxepan‐2‐one as high as 89% as determined by differential scanning calorimetry. WAXS investigation of the triblock copolymers showed a crystal structure similar to that of the pure poly(L ‐lactide). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1774–1784, 2000  相似文献   

16.
A series of well‐defined centipede‐like copolymers with poly(glycidyl methacrylate) (PGMA) as main chain and poly(L ‐lactide) (PLLA) and polystyrene (PSt) as side chains have been synthesized successfully by combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). The synthetic process includes three steps. (1) Synthesis of PGMA via ATRP; (2) preparation of macroinitiator with one bromine group and a hydroxyl group at every GMA unit of PGMA; (3) ring‐opening polymerization of LLA and ATRP of St to obtain the asymmetric centipede‐like copolymers. The number–average degrees of polymerization of PGMA backbone, PLLA and PSt side chains were determined by 1H‐NMR spectra, and the molecular weights of the resultant intermediates and centipede‐like copolymers were measured by gel permeation chromatography. The molecular weight distributions were narrow and the molecular weights of both the backbone and the side chains were controllable. The thermal behavior of the centipede‐like copolymers was investigated by differential scanning calorimeter. With the increase of PSt side chain length, the glass transition temperature of PLLA side chains shifted to high temperature, and crystallization ability of PLLA side chains became poor. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5580–5591, 2008  相似文献   

17.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

18.
Three different, new germanium initiators were used for ring‐opening polymerization of L ‐lactide. Chlorobenzene and 120 °C was a usable polymerization system for solution polymerization, and the results from the polymerizations depended on the initiator structure and bulkiness around the insertion site. The average molecular weights as measured by size exclusion chromatography increased linearly with the monomer conversion, and the molecular weight dispersity was around 1.2 for initiators 1 and 2 , whereas it was around 1.4 for initiator 3 . The average molecular weight of poly(L ‐lactide) could be controlled with all three initiators by adding different ratios of monomer and initiator. The reaction rate for the solution polymerization was, however, overall extremely slow. With an initial monomer concentration of 1 M and a monomer‐to‐initiator ratio of 50, the conversion was 93% after 161 h for the fastest initiator. In bulk polymerization, 160 °C, the conversion was 90% after 10 h. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3074–3082, 2003  相似文献   

19.
A simple, one‐step procedure has been developed for the preparation of bifunctional initiators capable of polymerizing monomers suitable for atom‐transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP). These bifunctional initiators were employed for making narrow disperse poly(styrene) macroinitiators, which were subsequently used for the ROP of various lactides to yield poly(styrene‐block‐lactide) copolymers. Thermogravimetric analysis (TGA) of these block copolymers are interesting in that it shows a two‐step degradation curve with the first step corresponding to the degradation of poly(lactide) segment and the second step associated with the poly(styrene) segment of the block copolymer. This nature of the block copolymer makes it possible to estimate the block copolymer content by TGA in addition to the 1H NMR spectroscopic analysis. Thus, this study for the first time highlights the possibility of making porous materials by thermal means which are otherwise obtained by base hydrolysis. The bifunctional initiators were prepared by the esterification of 3‐hydroxy, 4‐hydroxy, and 3,5‐dihydroxy benzyl alcohols with α‐bromoisobutyryl bromide and 2‐bromobutyryl bromide. A mixture of products was obtained, which were purified by column chromatography. The esterified benzyl alcohols were employed in the polymerization of styrene under copper (Cu)‐catalyzed ATRP conditions to yield macroinitiators with low polydispersity. These macroinitiators were subsequently used in the ROP of L ‐, DL ‐, and mixture of lactides. The formation of block copolymers was confirmed by gel permeation chromatography (GPC), spectroscopic and thermal characterizations. The molecular weight of the block copolymers was always higher than the macroinitiator, and the GPC chromatogram was symmetrical indicating the uniform initiation of ROP by the macroinitiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 102–116, 2008  相似文献   

20.
Poly[(caprolactone‐co‐lactide)‐b‐perfluoropolyether‐b‐(caprolactone‐co‐lactide)] copolymers (TXCLLA) were prepared by ring‐opening polymerization of D ,L ‐dilactide (LA2) and caprolactone (CL) in the presence of α,ω‐hydroxy terminated perfluoropolyether (Fomblin Z‐DOL TX) as macroinitiator and tin(II) 2‐ethylexanoate as catalyst. 1H NMR analysis showed that LA2 is initially incorporated into the copolymer preferentially with respect to CL. A blocky structure of the polyester segment was also indicated by the sequence distribution analysis of the monomeric units. Differential scanning calorimetry analysis showed the compatibility between poly(lactide) (PLA) and poly(caprolactone) (PCL) blocks inside the amorphous phase with glass‐transition temperature values increasing from ?60 to ?15 °C by increasing the PLA content. Copolymers with high average length of CL blocks were semicrystalline with a melting temperature ranging from +35 to +47 °C. Surface analysis showed a high surface activity of TXCLLA copolymers with values of surface tension independent from the PLA/PCL content and very close to those of pure TX. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3588–3599, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号