首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two New Alkaline-Earth-Oxoindates: BaCa2In6O12 and BaSr2In6O12 The hitherto unknown compounds (I): BaCa2In6O12 and (II): BaSr2In6O12 were prepared and examined by single crystal X-Ray work. (I) and (II) crystallize with hexagonal symmetry, space group C? P63/m, with (I): a = 9.880, c = 3.211 Å; (II): a = 9.9443; c = 3.2671 Å, Z = 1. Both compounds are isotypic to the metastable oxide AM2Ln6O12, but without metastable behavior. The [In6O12]6? network is occupied by the alkaline earth ions. One of the tunnels is stuffed by Ca2+ and Sr2+ respectively, the other one by Ba2+ in a statistical distribution on possible point positions. (I) and (II) prove the existence of the AM2Ln6O12-type in respect to small Ln3+ ions.  相似文献   

2.
Nitridophosphates MP2N4:Eu2+ (M=Ca, Sr, Ba) and BaSr2P6N12:Eu2+ have been synthesized at elevated pressures and 1100–1300 °C starting from the corresponding azides and P3N5 with EuCl2 as dopant. Addition of NH4Cl as mineralizer allowed for the growth of single crystals. This led to the successful structure elucidation of a highly condensed nitridophosphate from single‐crystal X‐ray diffraction data (CaP2N4:Eu2+ (P63, no. 173), a=16.847(2), c=7.8592(16) Å, V=1931.7(6) Å3, Z=24, 2033 observed reflections, 176 refined parameters, wR2=0.096). Upon excitation by UV light, luminescence due to parity‐allowed 4f6(7F)5d1→4f7(8S7/2) transition was observed in the orange (CaP2N4:Eu2+, λmax=575 nm), green (SrP2N4:Eu2+, λmax=529 nm), and blue regions of the visible spectrum (BaSr2P6N12:Eu2+ and BaP2N4:Eu2+, λmax=450 and 460 nm, respectively). Thus, the emission wavelength decreases with increasing ionic radius of the alkaline‐earth ions. The corresponding full width at half maximum values (2240–2460 cm?1) are comparable to those of other known Eu2+‐doped (oxo)nitrides emitting in the same region of the visible spectrum. Following recently described quaternary Ba3P5N10Br:Eu2+, this investigation represents the first report on the luminescence of Eu2+‐doped ternary nitridophosphates. Similarly to nitridosilicates and related oxonitrides, Eu2+‐doped nitridophosphates may have the potential to be further developed into efficient light‐emitting diode phosphors.  相似文献   

3.
Syntheses, Crystal Structure, and Properties of the Cage‐like, Hexaacidic P12S12N8(NH)6 · 14 H2O and its Salts Li6[P12S12N14] · 26 H2O, (NH4)6[P12S12N14] · 10 H2O, and K6[P12S12N14] · 8 H2O The cage‐like acid P12S12N8(NH)6 · 14 H2O was obtained by the reaction of KSCN with P4S10 via the formation of K6[P12S12N14] · 8 H2O and subsequent ion exchange reactions in aqueous solution. Starting from the acid the salts Li6[P12S12N14] · 26 H2O and (NH4)6[P12S12N14] · 10 H2O were synthesized. According to X‐ray single‐crystal structure analyses the compounds are built up by isosteric P–N cages [P12S12N[3]8N[2]6]6–. Each of them is made up of twelve P3N3 rings, which exclusively exhibit the boat conformation. The cages have the idealized symmetry 2/m3; P12S12N8(NH)6 · 14 H2O: P1, a = 1119.11(7), b = 1123.61(7), c = 1125.80(6) pm, α = 80.186(4), β = 60.391(4), γ = 60.605(4)°, Z = 1; Li6[P12S12N14] · 26 H2O: Fm3, a = 1797.4(1) pm, Z = 4; (NH4)6[P12S12N14] · 10 H2O: P63, a = 1153.2(1), c = 2035.6(2) pm, Z = 2; K6[P12S12N14] · 8 H2O: R3c, a = 1142.37(5), c = 6009.6(3) pm, Z = 6. In the crystal the cages of the acid are crosslinked via hydrate molecules by hydrogen bonds. The cations in the salts show a high‐mobility and are located between the cages.  相似文献   

4.
Crystal Structure of Hexamine Cyclotriphosphazene, P3N3(NH2)6 In the presence of KNH2 hexamine cyclotriphosphazene semi ammoniate (molar ratio 12:1) in NH3 gives crystals of solvent free P3N3(NH2)6 within 5 d at 130°C and p(NH3) = 110 bar. The structure was solved by X-rax methods: P3N3(NH2)6: P21/c, Z = 4, a = 10.889(6) Å, b = 5.9531(6) Å, c = 13.744(8) Å, β = 97.83(3)°, Z(Fo) = 1 721 with (Fo)2 ≥ 3σ(Fo)2, Z(var.) = 157, R/Rw = 0,036/0,041 The structure contains columns of molecules P3N3(NH2)6 all in the same orientation. The six-membered rings within one molecule have boat conformation. The columns are stacked together in a way that one is surrounded by four others shifted by half a lattice constant in direction [010]. Strong hydrogen bridge-bonds N? H…?N connect molecules within the columns and between them.  相似文献   

5.
SrNi10P6, EuNi10P6, and BaCo10As6: Phase Transitions and Crystal Structures SrNi10P6, EuNi10P6 and BaCo10As6 were prepared by heating mixtures of the elements in the range of 800°–1000 °C and were investigated by means of single‐crystal X‐ray methods. At higher temperatures the isotypic Ni phosphides (HT‐SrNi10P6: a = 6.481(2), b = 16.080(4), c = 8.763(2) Å (350 °C); HT‐EuNi10P6: a = 6.509(2), b = 16.063(4), c = 8.766(4) Å (500 °C)) crystallize in the BaNi10P6 type structure (Cmca; Z = 4), which can be described as an arrangement of Ni14P12 cages with Sr or Eu atoms in the centres. The cages are linked to layers separated by additional Ni atoms, which are coordinated tetrahedrally by P atoms of different cages. Cooling down both compounds undergo from about 270 °C (SrNi10P6) and 410 °C (EuNi10P6) respectively a second‐order phase transition involved with a change to an orthorhombic P lattice. In the structure of the NT phases (Pnma; Z = 4; NT‐SrNi10P6: a = 15.993(1), b = 6.473(1), c = 8.735(1) Å; NT‐EuNi10P6: a = 15.925(1), b = 6.478(1), c = 8.720(1) Å (25 °C)) the Ni14P12 cages are slightly distorted in comparison with the high temperature modifications. BaCo12As6 (a = 16.405(9), b = 6.858(4), c = 8.955(7) Å) crystallizes in the same structure (Pnma), but doesn't exhibit a comparable phase transition up to 600 °C. Measurements of the suszeptibiliy of EuNi10P6 between 4 K and 850 K showed divalent Europium and no magnetic order down to 4 K.  相似文献   

6.
A novel borophosphate, Zn3(C6H14N2)3[B6P12O39(OH)12] · (C6H14N2)[HPO4] has been synthesised under mild hydrothermal conditions at T = 165 °C. The chiral crystal structure was determined by single crystal X‐ray diffraction data (trigonal, R3 (no. 146), Z = 3, a = 2089.55(4) pm, c = 1237.03(4) pm, V = 4677.5(2) · 106 pm3, R1 = 0.066, wR2 = 0.164 for 5100 observed reflections). The title compound can be considered as an ordered composite of the two different and neutral structures which fit into each other: An open framework of composition Zn3(C6H14N2)3[B6P12O39(OH)12] and columns of composition (C6H14N2)[HPO4]. The framework structure is formed by mixed octahedral‐tetrahedral secondary building units, in a three‐dimensional arrangement reflecting a hierarchical derivative of the NbO structure type. The underlying NbO topology is illustrated with the help of Periodic Nodal Surfaces. The composite nature of the compound is resolved in the spatial segregation of two frameworks with a separating surface.  相似文献   

7.
Synthesis and Crystal Structure of Cobalt(II)-hexaoxodiphosphate(P? P)(4?)-dodecahydrate, Co2P2O6 · 12 H2O Co2P2O6 · 12H2O was obtained by cleavage and simultaneous oxidation of cyclo-hexaphosphate(III) in a solution of ethanol and aqueous ammonia. The crystal structure has been determined (1 898 independent diffractometer data): space group Pbam (No. 55), a = 6.710(2), b = 12.196(2), c = 10.073(3) Å, V = 825.3(1) Å3, Z = 2, R = 0.060. The P2O64? anions show site symmetry C2h and are connected to form chains via cobalt. Two cobalt ions together with two sets of four water molecules and two oxygen atoms of P2O64? form pairs of edge connected octahedra. The common edges are formed by the oxygen atoms of the P2O6 groups.  相似文献   

8.
Molybdenum(II) Halide Clusters with two Alcoholate Ligands: Syntheses and Crystal Structures of (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] and (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 . Reaction of Mo6Cl12 with two equivalents of sodium methoxide in the presence of 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] ( 1 ), which can be converted to (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 ( 2 ) by metathesis with 9-Anthracenemethanole in propylene carbonate. As confirmed by X-ray single crystal structure determination ( 1 : C2/m, a=25.513(8) Å, b=13.001(3) Å, c=10.128(3) Å, β=100.204(12)°; : C2/c, a=15.580(5) Å, b=22.337(5) Å, c=27.143(8) Å, β=98.756(10)°) the compounds contain anionic cluster units [Mo6ClCl(ORa)2]2? with two alcoholate ligands in terminal trans positions ( 1 : d(Mo—Mo) 2.597(2) Å to 2.610(2) Å, d(Mo—Cli) 2.471(3) Å to 2.493(4) Å, d(Mo—Cla) 2.417(8) Å and 2.427(8) Å, d(Mo—O) 2.006(13) Å; 2 : d(Mo—Mo) 2.599(3) Å to 2.628(3), d(Mo—Cli) 2.468(8) Å to 2.506(7) Å, d(Mo—Cla) 2.444(8) Å and 2.445(7) Å, d(Mo—O) 2.012(19) Å).  相似文献   

9.
The novel thiodiphosphate, [Na(12‐crown‐4)2]2[P2S6] · CH3CN, bis[di(12‐crown‐4)sodium] hexathiodiphosphate(V) acetonitrile solvate ( 1 ) has been synthesized by the reaction of Na2[P2S6] with 12‐crown‐4 in dry acetonitrile. The title compound crystallizes in the tetragonal space group P42/mbc (no. 135), with a = 15.184(1) Å, c = 21.406(2) Å and Z = 4 and final R1 = 0.0671 and wR2 = 0.0809. The crystal structure is characterized by discrete sodium‐bound crown‐ether sandwich cations, [Na(12‐crown‐4)2]+ and [P2S6]2? ions with D2h symmetry. Sodium ion is coordinated by the eight oxygen atoms of two crown‐ether molecules to form a square antiprisma. Solvent molecules of CH3CN are statistically disordered. Distances and angles of the [P2S6]2? unit are similar to those in [K(18‐crown‐6)]2 [P2S6] · 2 CH3CN, and in K2[P2S6] and Cs2[P2S6]. The FT‐Raman and FT‐IR spectrum of the title compound has been recorded and interpreted, especially with respect to the P2S6 group and in comparison to the few known metal hexathiodiphosphates(V).  相似文献   

10.
The reaction of S4N3Cl with metal salts leads to complexes containing the S3N?chelating ligand, a reaction which proceeds smoothly especially in an alkaline medium. Thus we were able to prepare, by the reaction of CuCN with S4N3Cl and [Ph6P2N]OH (Ph = phenyl), the salt [Ph6P2N][Cu3(S3N)2(CN)2], a compound in which the anions build a bidimensional network through supplementary Cu - S contact interactions. The salt is monoclinic, space group C2/c, a = 18.960, b = 14.651 and c = 15.400 Å, β = 101.03° and Z = 4. Metal Sulfur Nitrogen Compounds. 22. S4N3Cl as a Starting Compound for the Preparation of Complexes Containing the S3N? Ligand. Complexes [Ph6P2N] [Cu3(S3N)2 (CN)2] and [Ph4As] [(CuS3N)2 (CN)] In contrast, the reaction of CuN with S4N3Cl and [Ph4As]OH led to the compound [Ph4As][(CuS3N)2(CN)], monoclinic, space group C2/c, a = 18.478, b = 6.405, c = 27.051 Å, β = 119.50°, Z = 4. In the centrosymmetric anion the two Cu(S3N) groups are linked together by disordered CN? groups. An additional linkage results from Cu - Cu contact interactions, with d = 2.84 Å.  相似文献   

11.
Synthesis and Crystal Structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an Adamantane-like Anion [P4(NH)6N4]4? Crystals of Na10[P4(NH)6N4](NH2)6(NH3)0.5 were obtained by the reaction of P3N5 with NaNH2 (molar ratio 1:20) within 5 d at 600°C in autoclaves. The following data characterize X-ray investigations: Fm3 m, Z = 8, a = 15.423(2) Å, Z(F) = 261 with F ≥ 3 σ(F) Z(Variables) = 27, R/Rw = 0.086/0.089 The compound contains the hitherto unknown anion [P4(NH)6N4]4?, which resembles adamantane. The total structure can be described as follows: The centers of gravity of units of [Na8(NH2)6(NH3)]2+ – 8Na+ on the corners of a cube, 6NH2? on the ones of an inscribed octahedron with NH3 in the center – follow the motif of a cubic-closest packed arrangement. Units of [Na12(NH2)6]6+ – 12Na+ on the corners of a cuboctahedron and 6NH2? on the ones of an inscribed octahedron – occupy all octahedral and those of [P4(NH)6N4]4? all tetrahedral sites.  相似文献   

12.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

13.
Stacking Variants of SrPtSb and CaAl2Si2 analogous Units Structure determinations on the basis of single crystal X‐ray methods revealed, that the crystal structures of Ca3Cu2Zn2P4 (P3 m1; Z = 1; a = 4.034(1), c = 14.604(3) Å), the isotypic Eu compound (a = 4.150(9), c = 15.210(7) Å), of Ca2CuZn2P3 (P63/mmc; Z = 2; a = 4.048(2), c = 21.466(11) Å) and Ca4Cu3Zn2P5 (P63/mmc; Z = 2; a = 4.041(1), c = 37.060(7) Å) respectively can be described as stacking variants built up by two different segments. The first one corresponds with the hexagonal SrPtSb structure type, the second one with the trigonal CaAl2Si2 structure type. The segments along [001] are arranged one another and are represented with different weightiness in the compounds concerned.  相似文献   

14.
Two novel borophosphates, MII(C4H12N2)[B2P3O12(OH)] (MII = Co, Zn), exhibiting open frameworks, have been synthesized by hydrothermal reactions (T = 165 °C). The crystal structures of the isotypic compounds have been determined both at 293 K (orthorhombic, Ima2 (no. 46), Z = 4; MII = Co: a = 12.4635(4) Å, b = 9.4021(4) Å, c = 11.4513(5) Å, V = 1341.90 Å3, R1 = 0.0202, wR2 = 0.0452, 2225 observed reflections with I > 2σ(I); MII = Zn: a = 12.4110(9) Å, b = 9.4550(5) Å, c = 11.4592(4) Å, V = 1344.69 Å3, R1 = 0.0621, wR2 = 0.0926, 1497 observed reflections with I > 2σ(I)). Distorted CoO6‐octahedra and ZnO5‐square‐pyramids, respectively, share common oxygen‐corners with BO4‐, PO4‐ and (HO)PO3‐tetrahedra. The tetrahedral groups are linked via common corners to form infinite loop‐branched borophosphate chains [B2P3O12(OH)4–]. The open framework of MII‐coordination polyhedra and tetrahedral borophosphate chains contains a three‐dimensional system of interconnected structural channels running along [100], [011] and [011], respectively, which are occupied by di‐protonated piperazinium ions.  相似文献   

15.
Synthesis and Crystal Structure of a Cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4] · 2 CsNH2 Well crystallized Cesium-tetraimidophosphate-diamide is obtained by the reaction of CsNH2 with P3N5 in autoclaves at 673 K within three days. X-ray single crystal investigations led to the following data
  • Ccca, Z = 4, a = 8.192(5) Å, b = 20.472(5) Å,
  • c = 8.252(3) Å
  • Z(F) ≥3σ(F) = 916, Z(Var.) = 32, R/Rw=1 = 0.017/0.021
The compound contains the hitherto unknown anion [P(NH)4]3?.  相似文献   

16.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

17.
The two novel thioantimonate(V) compounds [Mn(C6H18N4)(C6H19N4)]SbS4 ( I ) and [Mn(C6H14N2)3][Mn(C6H14N2)2(SbS4)2]·6H2O ( II ) were synthesized under solvothermal conditions by reacting elemental Mn, Sb and S in the stoichiometric ratio in 5 ml tris(2‐aminoethyl)amine (tren) at 140 °C or chxn (trans‐1, 2‐diaminocyclohexane, aqueous solution 50 %) at 130 °C. Compound I crystallises in the triclinic space group P1¯, a = 9.578(2), b = 11.541(2), c = 12.297(2)Å, α = 62.55(1), β = 85.75(1), γ = 89.44(1)°, V = 1202.6(4)Å3, Z = 2, and II in the monoclinic space group C2/c, a = 32.611(2), b = 13.680(1), c = 19.997(1)Å, β = 117.237(5)°, V = 7931.7(8)Å3, Z = 4. In I the Mn2+ cation is surrounded by one tetradentate tren molecule, one protonated tren acting as a monodentate ligand and a monodentate [SbS4]3— anion yielding a distorted octahedral environment. In II one unique Mn2+ ion is in an octahedral environment of three bidentate chxn molecules and the second independent Mn2+ ion is coordinated by two chxn ligands and two monodentate [SbS4]3— units leading to a distorted octahedral surrounding. The compounds were investigated and characterized with thermal and spectroscopic methods.  相似文献   

18.
The New Layer‐Silicates Ba3Si6O9N4 and Eu3Si6O9N4 The new oxonitridosilicate Ba3Si6O9N4 has been synthesized in a radiofrequency furnace starting from BaCO3, amorphous SiO2 and Si3N4. The reaction temperature was at about 1370 °C. The structure of the colorless compound has been determined by single‐crystal X‐ray diffraction analysis (Ba3Si6O9N4, space group P3 (no. 143), a = 724.9(1) pm, c = 678.4(2) pm, V = 308.69(9)· 106 pm3, Z = 1, R1 = 0.0309, 1312 independent reflections, 68 refined parameters). The compound is built up of corner sharing SiO2N2 tetrahedra forming corrugated layers between which the Ba2+ ions are located. Substitution of barium by europium leads to the isotypic compound Eu3Si6O9N4. Because no single‐crystals could be obtained, a Rietveld refinement of the powder diffractogram was conducted for the structure refinement (Eu3Si6O9N4, space group P3 (no. 143), a = 711.49(1) pm, c = 656.64(2) pm, V = 287.866(8) ·106 pm3, Rp = 0.0379, RF2 = 0.0638). The 29Si MAS‐NMR spectrum of Ba3Si6O9N4 shows two resonances at ?64.1 and ?66.0 ppm confirming two different crystallographic Si sites.  相似文献   

19.
Synthesis and Crystal Structure of Sr2Rh7P6 Single crystals of Sr2Rh7P6 were obtained by reaction of the elements in molten lead at 1100 °C and investigated by X-ray methods. The compound crystallizes tetragonally (a = 11.080(2), c = 4.098(1) Å) and forms a crystal structure (P 4 21m; Z = 2) with ThCr2Si2 analogous units, which are linked with each other in a new way. Therefore the RhP4 tetrahedra form bands of edge sharing chains parallel to [001] anstead of layers as in the ThCr2Si2 type structure. The arrangement enables a part of the P atoms to form short P–P distances of 2,26 Å and space for additional Rh atoms with a likewise distorted tetrahedral coordination of P atoms is obtained.  相似文献   

20.
Crystal Structure of Sodium Dihydrogencyamelurate Tetrahydrate Na[H2(C6N7)O3] · 4 H2O Sodium dihydrogencyamelurate‐tetrahydrate Na[H2(C6N7)O3]·4 H2O was obtained by neutralisation of an aqueous solution, previously prepared by hydrolysis of the polymer melon with sodium hydroxide. The crystal structure was solved by single‐crystal X‐ray diffraction ( a = 6.6345(13), b = 8.7107(17), c = 11.632(2) Å, α = 68.96(3), β = 87.57(3), γ = 68.24(3)°, V = 579.5(2) Å3, Z = 2, R1 = 0.0535, 2095 observed reflections, 230 parameters). Both hydrogen atoms of the dihydrogencyamelurate anion are directly bound to nitrogen atoms of the cyameluric nucleus, thus proving the preference of the keto‐tautomere in salts of cyameluric acid in the solid‐state. The compound forms a layer‐like structure with an extensive hydrogen bonding network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号