首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
La4B14O27: A Lanthanum ultra‐Oxoborate with a Framework Structure Single crystals of La4B14O27 could be synthesized by the reaction of La2O3, LaCl3 and B2O3 with an access of CsCl as fluxing agent in gastightly sealed platinum ampoules within twenty days at 710 °C and appear as colourless, transparent and waterresistant platelets. The new lanthanum oxoborate La4B14O27 (monoclinic, C2/c; a = 1120.84(9), b = 641.98(6), c = 2537.2(2) pm, β = 100.125(8)°; Z = 4) is built of a three‐dimensional boron‐oxygen framework containing seven crystallographically different boron atoms. Four of these B3+ cations are surrounded by four O2? anions tetrahedrally, whereas the other three have only three oxygen neighbours with nearly plane triangular coordination figures. Three of the [BO4]5? tetrahedra form [B3O9]9? rings by cyclic vertex‐condensation, which are further linked via [BO3]3? units to infinite layers. Two of these layers connect via one [B2O7]8? unit of two corner‐shared [BO4]5? tetrahedra to double layers, which themselves build up a three‐dimensional framework together with chains consisting of two [BO4]5? tetrahedra and one [BO3]3? triangle. One of the two crystallographically independent La3+ cations (La1) is surrounded by ten O2? anions and resides within the oxoborate double layers. (La2)3+ shows a (8+2)‐fold coordination of O2? anions and occupies channels along the [110] direction.  相似文献   

2.
Thiosilicates of the Rare‐Earth Elements: III. KLa[SiS4] and RbLa[SiS4] – A Structural Comparison Pale yellow, platelet shaped, air‐ and water resistant single crystals of KLa[SiS4] derived from the reaction of lanthanum (La) and sulfur (S) with silicon disulfide (SiS2) in a molar ratio of 2 : 3 : 1 with an excess of potassium chloride (KCl) as flux and source of potassium ions in evacuated silica ampoules at 850 °C within seven days. The analogous reaction utilizing a melt of rubidium chloride (RbCl) instead also leads to yellow comparable single crystals of RbLa[SiS4]. The potassium lanthanum thiosilicate crystallizes monoclinically with the space group P21/m (a = 653.34(6), b = 657.23(6), c = 867.02(8) pm, β = 107.496(9)°) and two formula units per unit cell, while the rubidium lanthanum thiosilicate has to be assigned orthorhombically with the space group Pnma (a = 1728.4(2), b = 667.23(6), c = 652.89(6) pm) and four formula units in its unit cell. In both compounds the La3+ cations are surrounded by 8+1 sulfide anions in the shape of tricapped trigonal prisms. The Rb+ cations in RbLa[SiS4] show a coordination number of 9+2 relative to the S2? anions, which form pentacapped trigonal prisms about Rb+. This coordination number, however, is apparently too high for the K+ cations in KLa[SiS4], so that they only exhibit a bicapped trigonal prismatic environment built up by eight S2? anions. The isolated thiosilicate tetrahedra [SiS4]4? of the rubidium compound are surrounded by La3+ both edge‐ and face‐capping, but terminal as well as edge‐ and face‐spanning by Rb+. In the potassium compound there is no change for the La3+ environment about the [SiS4]4? tetrahedra, but the K+ cations are only able to attach terminal and via edges. The whole structure is built up by anionic equation/tex2gif-stack-1.gif{La[SiS4]}? layers that are separated by the alkali metal cations. In direct comparison the two thiosilicate structures can be regarded as stacking variants.  相似文献   

3.
La3OCl[AsO3]2: A Lanthanum Oxide Chloride Oxoarsenate(III) with a “Lone‐Pair” Channel Structure La3OCl[AsO3]2 was prepared by the solid‐state reaction between La2O3 and As2O3 using LaCl3 and CsCl as fluxing agents in evacuated silica ampoules at 850 °C. The colourless crystals with pillar‐shaped habit crystallize tetragonally (a = 1299.96(9), c = 558.37(5) pm, c/a = 0.430) in the space group P42/mnm (no. 136) with four formula units per unit cell. The crystal structure contains two crystallographically different La3+ cations. (La1)3+ is coordinated by six oxygen atoms and two chloride anions in the shape of a bicapped trigonal prism (CN = 8), whereas (La2)3+ carries eight oxygen atoms and one Cl? anion arranged in the shape of tricapped trigonal prism (CN = 9). The isolated pyramidal [AsO3]3? anions (d(As–O) = 175–179 pm) consist of three oxygen atoms (O2 and two O3), which surround the As3+ cations together with the free, non‐binding electron pair (lone pair) Ψ1‐tetrahedrally (?(O–As–O) = 95°, 3×). One of the three crystallographically independent oxygen atoms (O1), however, is exclusively coordinated by four (La2)3+ cations in the shape of a real tetrahedron (d(O–La) = 236 pm, 4×). These [(O1)(La2)4]10+ tetrahedra form endless chains in the direction of the c axis through trans‐edge condensation. Empty channels, constituted by the lonepair electrons of the Cl? anions and the As3+ cations in the Ψ1‐tetrahedral oxoarsenate(III) anions [AsO3]3?, run parallel to [001] as well.  相似文献   

4.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

5.
Nitride Sulfide Chlorides of the Lanthanides. II. The Composition M6N3S4Cl (M = La? Nd) The oxidation of the “light” lanthanides (M = La? Nd) with sulfur and NaN3 in the presence of the chlorides MCl3 yields chlorine-poor nitride sulfide chlorides with the composition M6N3S4Cl when appropriate molar ratios of the reactants are used. Additional NaCl as a flux secures complete and fast reactions (7 d) at 850°C in evacuated silica vessels as well as single-crystalline products (red-brown needles). The crystal structure was determined from X-ray single crystal data for the limiting representatives La6N3S4Cl (orthorhombic, Pnma (no. 62), Z = 4, a = 1159.7(4), b = 410.95(7), c = 2756.8(9)pm, R = 0.030, Rw = 0.027) and Nd6N3S4Cl (a = 1137.1(3), b = 399.34(6), c = 2687.6(9)pm, R = 0.034, Rw = 0.033). Guinier powder data revealed the cerium and praseodymium analogues to be isotypic. The crystal structure exhibits two different chains of connected [NM4] tetrahedra which are commensurate in translation. Six crystallographically different M3+ are present, two of them (M1 and M2) build up the chain [(N1)(M1) · (M2)]3+ together with (N1)3? by cis-edge connection of tetrahedra. The four remainders (M3? M6) arrange as pairs [N2M6] of edge-shared [NM4] tetrahedra with (N2)3? and (N3)3? which are further connected via four vertices to form the [(M5)(N-2){(M3)(1+1)/(1+1)(M4)(1+1)/(1+1))}e(N3)(M6)]6+ double chain. Bundled along [010] like a closest packing of rods, both types of chains are held together by five crystallographically different but by X-ray diffraction indistinguishable anions S2? (S1? S4) and Cl? adjusting the charge balance in a molar ratio of 4:1.  相似文献   

6.
Single Crystals of La[AsO4] with Monazite‐ and Sm[AsO4] with Xenotime‐Type Structure Brick‐shaped, transparent single crystals of colourless monazite‐type La[AsO4] (monoclinic, P21/n, a = 676.15(4), b = 721.03(4), c = 700.56(4) pm, β =104.507(4)°, Z = 4) and pale yellow xenotime‐type Sm[AsO4] (tetragonal, I41/amd, a = 718.57(4), c = 639.06(4) pm, Z = 4) emerge as by‐products from alkali and rare‐earth metal chloride fluxes whenever the synthesis of lanthanide(III) oxoarsenate(III) derivatives from admixtures of the corresponding sesquioxides in sealed, evacuated silica ampoules is accompanied by air intrusion and subsequent oxidation. Nine oxygen atoms from seven discrete [AsO4]3? tetrahedra recruit the rather irregular coordination sphere of La3+ (d(La3+?O2?) = 248 – 266 pm plus 291 pm) and even a tenth ligand could be considered at a distance of 332 pm. The trigonal dodecahedral figure of coordination consisting of eight oxygen atoms at distances of 236 and 248 pm (4× each) about Sm3+ is provided by only six isolated tetrahedral [AsO4]3? units. Alternating trans‐edge condensation of the latter with the [LaO9+1] polyhedra of monazite‐type La[AsO4] and the [SmO8] polyhedra of xenotime‐type Sm[AsO4] constitutes the main structural chain features along [100] or [001], respectively. The bond distances and angles of the complex [AsO4]3? anions range within common intervals (d(As5+?O2?) = 167 – 169 pm, ?(O–As–O) = 100 – 116°) for both lanthanide(III) oxoarsenates(V) presented here.  相似文献   

7.
M3NS3, the First Nitride Sulfides of the Lanthanides (M = La? Nd, Sm) . The oxidation of the “light” lanthanides (M = La? Nd, Sm) with equimolar amounts of sulfur in the presence of NaN3 as nitrogen source results in the formation of the first lanthanide nitride sulfides: M3NS3 (evacuated silica vessels, some NaCl as flux, 850°C, 7 d). NaCl is afterwards removed from the not moisture sensitive crude product (faint- or orange-yellow to amber-co- loured transparent needles, oftenly intergrown to feltlike bunches) upon rinsing with water. The crystal structure was determined from X-ray single crystal data for the example of Sm3NS3 (orthorhombic, Pnma (no. 62), a = 1 201.18(7), b = 394.32(3), c = 1 285.27(6) pm, Z = 4, R = 0.027, Rw = 0.024), and M3NS3 (M = La? Nd) proved to be isostructural from Guinier powder data. There are three crystallographically different M3+ cations in six- (1 X) and sevenfold (2 X) coordination of the N3? and S2? anions. [(N3?)(M3+)4] tetrahedra connected via two corners forming linear chains [N(M1)1/1(M2)1/1(M3)2/2] 6+ build up the main structural feature. Arranged in the manner of a closest packing of rods, they are held together by three crystallographically different S2? which take care for charge neutrality and three-dimensional interconnection.  相似文献   

8.
During the reaction of cadmium sulfide with erbium and sulfur in evacuated silica ampoules pink lath‐shaped crystals of Er2S[SiO4] occur as by‐product which were characterized by X‐ray single crystal structure analysis. The title compound crystallizes orthorhombically in the space group Cmce (a = 1070.02(8), b = 1235.48(9), c = 683.64(6) pm) with eight formula units per unit cell. Besides isolated ortho‐oxosilicate units [SiO4]4?, the crystal structure contains two crystallographically independent Er3+ cations which are both eightfold coordinated by six oxygen and two sulfur atoms. The sulfide anions are surrounded by four erbium cations each in the shape of very distorted tetrahedra. These excentric [SEr4]10+ tetrahedra build up layers according to by vertex‐ and edge‐connection. They are piled parallel to (010) and separated by the isolated ortho‐oxosilicate tetrahedra.  相似文献   

9.
Pale yellow single crystals of Y[PS4] (tetragonal, I41/acd; a = 1065.72(5), c = 1899.23(9) pm, Z = 16) can easily be obtained by the reaction of the elements without using a flux to avoid the entrapment of alkali metals. The structure consists of isolated [PS4]3- tetrahedra (d(P-S) = 203 pm, 4×) each surrounded by four Y3+ cations resulting in a S4N4-analogous arrangement of the metal cations and sulfur atoms about the phosphorus in the center of this polyhedron. Both crystallographically different Y3+ cations are eightfold coordinated by sulfur in the shape of trigonal dodecahedra (d(Y-S) = 280 - 300 pm, CN = 8) which in turn belong to four exclusively edge-attached [PS4]3- tetrahedra. These build up a distorted cubic closest packing where the Y3+ cations are situated in one half of the tetrahedral holes the same way as S2- in the Pt2+ arrangement of the PtS-type structure.  相似文献   

10.
[La2Cl3(OAc)2(H2O)7]Cl: The First Lanthanide-Acetate-Halide-Hydrate with Chloride in Inner-Sphere Coordination [La2Cl3(OAc)2(H2O)7]Cl has been obtained as single crystals through the reaction of LaCl3 · 7H2O with diluted acetic acid or from La2O3 with acetyl chloride. In the crystal structure (triclinic, Z = 2, P1 (no. 2), a = 919.6(2), b = 950.7(2), c = 1178.9(2) pm, α = 82.52(1), β = 84.14(1), γ = 64.69(1)°, R = 0.021, Rw = 0.020), La3+ is surrounded by nine ligands (O, Cl). La1 has two chloride and seven oxygen ligands whereas La2 has one chloride and eight oxygen atoms as nearest neighbours. Four of the oxygen ligands of each lanthanum cation originate from a ?tetradentate”? acetate anion, the others from crystal water molecules. The ?tetradentate”? acetate groups are coordinated not only to one central La3+ as chelate ligands, but also to the ?left”? and ?right”? La3+ neighbours. Thereby, a one-dimensional infinite cationic chain, [La2Cl3(OAc)2(H2O)7]+, is formed that runs in the [011] direction. These chains are held together by ?lonesome”? chloride ions which are surrounded by (4 + 1) water molecules and connected to the chains via hydrogen bonds.  相似文献   

11.
Sm2As4O9: An Unusual Samarium(III) Oxoarsenate(III) According to Sm4[As2O5]2[As4O8] Pale yellow single crystals of the new samarium(III) oxoarsenate(III) with the composition Sm4As8O18 were obtained by a typical solid‐state reaction between Sm2O3 and As2O3 using CsCl and SmCl3 as fluxing agents. The compound crystallizes in the triclinic crystal system with the space group (No. 2, Z = 2; a = 681.12(5), b = 757.59(6), c = 953.97(8) pm, α = 96.623(7), β = 103.751(7), γ = 104.400(7)°). The crystal structure of samarium(III) oxoarsenate(III) with the formula type Sm4[As2O5]2[As4O8] (≡ 2 × Sm2As4O9) contains two crystallographically different Sm3+ cations, where (Sm1)3+ is coordinated by eight, but (Sm2)3+ by nine oxygen atoms. Two different discrete oxoarsenate(III) anions are present in the crystal structure, namely [As2O5]4? and [As4O8]4?. The [As2O5]4? anion is built up of two Ψ1‐tetrahedra [AsO3]3? with a common corner, whereas the [As4O8]4? anion consists of four Ψ1‐tetrahedra with ring‐shaped vertex‐connected [AsO3]3? pyramids. Thus at all four crystallographically different As3+ cations stereochemically active non‐binding electron pairs (“lone pairs”) are observed. These “lone pairs” direct towards the center of empty channels running parallel to [010] in the overall structure, where these “empty channels” being formed by the linkage of layers with the ecliptically conformed [As2O5]4? anions and the stair‐like shaped [As4O8]4? rings via common oxygen atoms (O1 – O6, O8 and O9). The oxygen‐atom type O7, however, belongs only to the cyclo‐[As4O8]4? unit as one of the two different corner‐sharing oxygen atoms.  相似文献   

12.
Two types of 4f–3d thiostannates with general formula [Hen]2[Ln(en)4(CuSn3S9)] ? 0.5 en ( Ln1 ; Ln=La, 1 ; Ce, 2 ) and [Hen]4[Ln(en)4]2[Cu6Sn6S20] ? 3 en ( Ln2 ; Ln=Nd, 3 ; Gd, 4 ; Er, 5 ) were prepared by reactions of Ln2O3, Cu, Sn, and S in ethylenediamine (en) under solvothermal conditions between 160 and 190 °C. However, reactions performed in the range from 120 to 140 °C resulted in crystallization of [Sn2S6]4? compounds and CuS powder. In 1 and 2 , three SnS4 tetrahedra and one CuS3 triangle are joined by sharing sulfur atoms to form a novel [CuSn3S9]5? cluster that coordinates to the Ln3+ ion of [Ln(en)4]3+ (Ln=La, Ce) as a monodentate ligand. The [CuSn3S9]5? unit is the first thio‐based heterometallic adamantane‐like cluster coordinating to a lanthanide center. In 3 – 5 , six SnS4 tetrahedra and six CuS3 triangles are connected by sharing common sulfur atoms to form the ternary [Cu6Sn6S20]10? cluster, in which a Cu6 core is enclosed by two Sn3S10 fragments. The topological structure of the novel Cu6 core can be regarded as two Cu4 tetrahedra joined by a common edge. The Ln3+ ions in Ln1 and Ln2 are in nine‐ and eightfold coordination, respectively, which leads to the formation of the [CuSn3S9]5? and [Cu6Sn6S20]10? clusters under identical synthetic conditions. The syntheses of Ln1 and Ln2 show the influence of the lanthanide contraction on the quaternary Ln/Cu/Sn/S system in ethylenediamine. Compounds 1 – 5 exhibit bandgaps in the range of 2.09–2.48 eV depending on the two different types of clusters in the compounds. Compounds 1 , 3 , and 4 lost their organic components in the temperature range of 110–350 °C by multistep processes.  相似文献   

13.
The phosphide oxide La2AuP2O was synthesized from lanthanum filings, dried La2O3, gold pieces, and ground red phosphorus in the ideal 1.33:0.33:1:2 ratio in an evacuated silica tube at 1473 K. Small single crystals were obtained by recrystallization in a NaCl/KCl flux. The structure was determined on the basis of single‐crystal X‐ray diffractometer data: new type, C2/m, a = 1537.3(3), b = 427.39(8), c = 1009.2(2) pm, β = 131.02(1) °, wR2 = 0.046, 1102 F2 values, 38 variables. La2AuP2O contains two striking structural motifs: The oxygen atoms are located in La4 tetrahedra. The latter are cis‐edge‐shared forming polymeric cationic [La2O]4+ chains. These cationic units are separated and charge‐balanced by [AuP2]4– polyanions which have monovalent gold in distorted trigonal planar phosphorus coordination. Two crystallographically independent phosphorus sites occur in the polyanion, i.e. isolated P3– besides dumb‐bells P24– (P2–P2 223 pm). La2AuP2O, which crystallizes in the form of ruby red transparent crystals, is an electron precise phosphide oxide (4La3+)(2Au+)(2P3–)(P24–)(2O2–).  相似文献   

14.
On the H‐ and A‐Type Structure of La2[Si2O7] By thermal decomposition of La3F3[Si3O9] at 700 °C in a CsCl flux single crystals of a new form of La2[Si2O7] have been found which is called H type (triclinic, P1; a = 681.13(4), b = 686.64(4), c = 1250.23(8) pm, α = 82.529(7), β = 88.027(6), γ = 88.959(6)°; Vm = 87.223(9) cm3/mol, Dx = 5.113(8) g/cm3, Z = 4) continuing Felsche's nomenclature. It crystallizes isotypically to the triclinic K2[Cr2O7] in a structure closely related to that of A–La2[Si2O7] (tetragonal, P41; a = 683.83(7), c = 2473.6(4) pm; Vm = 87.072(9) cm3/mol, Dx = 5.122(8) g/cm3, Z = 8). For comparison, the latter has been refined from single crystal data, too. Both the structures can be described as sequence of layers of each of two crystallographically different [Si2O7]6– anions always built up of two corner‐linked [SiO4] tetrahedra in eclipsed conformation with non‐linear Si–O–Si bridges (∢(Si–O–Si) = 128–132°) piled up in [001] direction and aligned almost parallel to the c axis. They differ only in layer sequence: Whereas the double tetrahedra of the disilicate units are tilted alternating to the left and in view direction ([010]; stacking sequence: AB) in H–La2[Si2O7], after layer B there follow due to the 41 screw axis layers with anions tilted to the right and tilted against view direction ([010]; stacking sequence: ABA′B′) in A–La2[Si2O7]. The extremely irregular coordination polyhedra around each of the four crystallographically independent La3+ cations in both forms (H and A type) consist of eight to ten oxygen atoms in spacing intervals of 239 to 330 pm. The possibility of more or less ordered intermediate forms will be discussed.  相似文献   

15.
Sm4S3[Si2O7] and NaSm9S2[SiO4]6: Two Sulfide Silicates with Trivalent Samarium The sulfide silicates Sm4S3[Si2O7] and NaSm9S2[SiO4]6 are obtained as light yellow transparent crystals by the reaction of Sm, Sm2O3, S, and SiO2 with fluxing SmCl3 or NaCl, respectively, in suitable molar ratios in fused evacuated silica tubes (850 °C, 7 d). Tetragonal crystals of Sm4S3[Si2O7] (I41/amd; Z = 8; a = 1186.4(1); c = 1387.0(2) pm) with ecliptically conformed [Si2O7]6–‐groups of corner sharing [SiO4]‐tetrahedra are formed. These double tetrahedra as well the sulfide anions (S2–) coordinate two crystallographically independent metal cations. They provide coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) for Sm1 and 9 (3 S2– and 6 O2–) for Sm2. NaSm9S2[SiO4]6 crystallizes hexagonally (P63/m; Z = 1; a = 975.32(9); c = 676.46(7) pm) in a modified bromapatite‐type structure. The coordination spheres about the two crystallographically different Sm3+ cations are built up by oxygen atoms of the orthosilicate units ([SiO4]4–) and sulfide anions (S2–). As a result, Sm1 and Sm2 have coordination numbers of 9 and 8, respectively. Na+ and (Sm1)3+ occupy the position 4 f in a molar ratio of 1 : 3 whereas the lower coordinated (Sm2)3+ occupies the 6 h position.  相似文献   

16.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

17.
Nd3NCl6 and Nd4NS3Cl3: Two Derivatives of Neodymium Nitride with Discrete Units of Edge‐Shared ([N2Nd6]12+) and Isolated [NNd4]9+ Tetrahedra, respectively For the preparation of Nd3NCl6 (orthorhombic, Pbca; a = 1049.71(8), b = 1106.83(8), c = 1621.1(1) pm; Z = 8) and Nd4NS3Cl3 (hexagonal, P63mc; a = 922.78(6), c = 683.06(4) pm; Z = 2) elemental neodymium is reacted with sodium azide (NaN3), neodymium trichloride (NdCl3) and in the case of Nd4NS3Cl3 additionally with sulfur in evacuated silica tubes at 750 °C (Nd3NCl6) and 850 °C (Nd4NS3Cl3), respectively. Thereby the hydrolysis‐sensitive nitride chloride forms coarse, brick‐shaped single crystals, while those of the insensitive nitride sulfide chloride emerge hexagonally and pillar‐shaped. The pale violet compounds each exhibit [NNd4] tetrahedra as characteristic structural features, which are connected via a common edge to form discrete pairs of tetrahedra ([N2Nd6]12+) in Nd3NCl6 and are present in Nd4NS3Cl3 even as isolated [NNd4]9+ units. Their three‐dimensional cross‐linkage as well as the charge‐balance regulation proceed solely through Cl anions in the nitride chloride, but through equimolar amounts of S2– and Cl anions in the nitride sulfide chloride. The crystal structure of Nd3NCl6 shows three crystallographically independent Nd3+ cations, each of which is eightfold coordinated by anions (Nd1: 2 N3– + 6 Cl; Nd2 and Nd3: 1 N3– + 7 Cl). Only two different kinds of Nd3+ underlie the structure of Nd4NS3Cl3: Nd1 is surrounded by one N3–, six S2– and three Cl with CN = 10, whereas one N3–, four S2– and three Cl only are coordinating Nd2 with CN = 8.  相似文献   

18.
Li6+2x[B10Se18]Sex (x ≈ 2), an Ion‐conducting Double Salt Li6+2x[B10Se18]Sex (x ≈ 2) was prepared in a solid state reaction from lithium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 800 °C. Subsequent cooling from 600 °C to 300 °C gave amber colored crystals with the following lattice parameters: space group I2/a (at 173 K); a = 17.411(1) Å, b = 21.900(1) Å, c = 17.820(1) Å, β = 101.6(1)°. The crystal structure contains a well‐defined polymeric selenoborate network of composition ([B10Se16Se4/2]6?)n consisting of a system of edge‐sharing [B10Se16Se4/2] adamantanoid macro‐tetrahedra forming large channels in which a strongly disorderd system of partial occupied Li+ cations and additional disordered Se2? anions is observed. The crystal structure of the novel selenoborate is isotypic to Li6+2x[B10S18]Sx (x ≈ 2) [1]. X‐ray and 7Li magic‐angle spinning NMR data suggest that the site occupancies of the three crystallographically distinct lithium ions exhibit a significant temperature dependence. The lithium ion mobility has been characterized by detailed temperature dependent NMR lineshape and spin‐lattice relaxation measurements.  相似文献   

19.
Nitride Sulfide Chlorides of the Lanthanides. I. The Composition M4NS3Cl3 (M = La Nd) The oxidation of the „light”︁ lanthanides (M = La Nd) with sulfur and NaN3 the presence of the chlorides MCl3 results in the formation of the first lanthanide nitride sulfide chlorides M4NS3Cl3 when appropriate molar ratios of the reactants are used. The addition of some NaCl (or an excess of MCl3) as a flux secures complete and fast reaction (7 d) at 850°C in evacuated silica vessels as well as single-crystalline products. Since these nitride sulfide chlorides (fine transparent needles) are not sensitive against hydrolysis, the surplus chloride can be removed easily with water. The crystal structure was determined from X-ray single crystal data for the example of La4NS3Cl3 (hexagonal, P63mc (no. 186), Z = 2, a = 941.40(3), c = 700.36(3) pm, R = 0.026, Rw = 0.021) and the nitride sulfide chlorides M4NS3Cl3 with M = Ce Nd proved to be isostructural from Guinier powder data. According to their Ba3OCl6-analogue structure, two crystallographically different M3+ cations are present (CN(M1) = 10, CN(M2) = 8). „Isolated”︁ tetrahedra [(N3−)(M3+)4] build up the Mayn structural feature according to [NM4]S3Cl3. They are hexagonally closest packed and interconnected via the crystallographically different but by X-ray diffraction indistinguishable anions S2− and Cl, which take care for charge neutrality.  相似文献   

20.
A New Samarium Nitride Sulfide: Sm4N2S3 The oxidation of samarium with sulfur in the presence of SmCl3 and NaN3 as nitrogen source (molar ratio: 12:9:4:2, evacuated silica vessel, some NaCl as flux, 850°C, 7 d) yields Sm4N2S3 as lath-shaped, dark red single crystals. The by-products (NaCl and NaSm2Cl6) are rinsed with water from the crude product. The crystal structure of Sm4N2S3 (monoclinic, C2/m (no. 12), Z = 2, a = 1 318.04(12), b = 391.57(2), c = 1 031.76(9) pm, β = 130.874(6)°, R = 0.036, Rw = 0.031) contains two crystallographically different Sm3+, both in sixfold coordination of the anions. Besides distorted octahedra [(Sm1)N3S3] and [(Sm2)NS5], tetrahedra [(N3?)(Sm)] connected via two cis-oriented edges to form chains [N(Sm1)3/3(Sm2)1/1]3+ build up the Mayn structural feature. These are arranged in the fashion of a closest packing of rods and held together by two crystallographically different S2? anions which take care for charge neutrality and three-dimensional interconnection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号