首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Effective cationic addition polymerization of 1,4‐dioxene, a six‐membered cyclic olefin with two oxygen atoms adjacent to the double bond, was performed using a simple metal halide catalyst system in dichloromethane. The polymerization was controlled when the reaction was conducted using GaCl3 in conjunction with an isobutyl vinyl ether–HCl adduct as a cationogen at –78°C to give polymers with predetermined molecular weights and relatively narrow molecular weight distributions. The long‐lived properties of the propagating species were further confirmed by a monomer addition experiment and the analyses of the product polymers by 1H NMR and MALDI–TOF–MS. Although highly clean propagation proceeded, the apparent rate constant changed during the controlled cationic polymerization of 1,4‐dioxene. The reason for the change was discussed based on polymerization results under various conditions. The obtained poly(1,4‐dioxene) exhibited a very high glass transition temperature (Tg) of 217°C and unique solubility. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
D -glucosamine-containing glycopolymers with well-controlled structure were synthesized by living cationic polymerization. To this end, D -glucosamine-containing vinyl ether (VE) of the type [CH2()CH(OCH2CH2OR)] was prepared, where R denotes a 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimide-β-D -glucopyranoside, i.e., the hydroxyl and amino groups in D -glucosamine residues are protected by acetyl and phthaloyl groups, respectively. It was found that (1) the efficient living cationic polymerization of VE monomer is achieved by a combination of ethylaluminum dichloride (EtAlCl2) with an adduct of trifluoroacetic acid (TFA) and isobutyl VE (IBVE) [CH3CH(OiBu)OCOCF3] (i.e., TFA/EtAlCl2 initiating system); and (2) the polymerization in toluene at the elevated temperature (0°C) is most suitable to proceed the homogeneous polymerization over the whole conversion range. The molecular weight distribution of the resulting polymers was very narrow ($ {\bar M}_w/{\bar M}_n \sim 1.1 $). Quantitative deprotection of the resulting precursor polymers was successfully achieved with hydrazine monohydrate to afford the corresponding water-soluble polymers with pendant D -glucosamine residues. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 751–757, 1997  相似文献   

3.
Dimethyl bicyclobutane‐1,3‐dicarboxylate was synthesized. Its homopolymer (PDBD) containing exclusively cyclobutane rings in its backbone was prepared by free radical polymerization. The copolymers of this bicyclobutane monomer with methyl methacrylate were also prepared. The glass transition temperature of the homopolymer is 159°C, while those of its copolymers are 143 and 121°C with 75/25 and 50/50 of the P(DBD/MMA) composition ratio, respectively. The Tg of PDBD homopolymer is substantially higher than that of commercial PMMA homopolymer despite a lower molecular weight, and is also much higher than that of its monomethyl cyclobutanecarboxylate analogue. These DBD homopolymer and copolymers also show better thermostability than the PMMA homopolymer. The weight‐average molecular weight of homopolymer is 37,000. The polydispersities of these polymers are relatively narrow, with the range of 1.6–1.9. These polymers form clear colorless films resembling PMMA film. The DBD homopolymer film shows a very similar optical cutoff compared to PMMA. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1569–1575, 1999  相似文献   

4.
Radical copolymerization of N‐phenylmaleimide (PhMI) is carried out with various diene monomers including naturally occurring compounds and the copolymers are efficiently produced by the suppression of Diels–Alder reaction as the competitive side reaction. Diene monomers with an exomethylene moiety and a fixed s‐trans diene structure, such as 3‐methylenecyclopentene and 4‐isopropyl‐1‐methyl‐3‐methylenecyclohexene, exhibit high copolymerization reactivity to produce a high‐molecular‐weight copolymer in a high yield. The copolymerization of sterically hindered noncyclic diene monomers, such as 2,4‐dimethyl‐1,3‐pentadiene and 2,4‐hexadiene, also results in the formation of a high‐molecular‐weight copolymer in a moderate yield. The NMR spectroscopy reveals that the obtained copolymers consist of predominant 1,4‐repeating structures for the corresponding diene unit. The copolymers have excellent thermal stability, that is, an onset temperature of decomposition over 330 °C and a glass transition temperature over 130 °C. The copolymerization reactivity of these diene monomers is discussed based on the results of the DFT calculations. The efficient copolymer formation in competition with Diels–Alder addition is investigated under various conditions of the temperature, solvents, and initiators used for the copolymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3616–3625.  相似文献   

5.
Cationic polymerization of 2,3‐dihydrofuran (DHF) and its derivatives was examined using base‐stabilized initiating systems with various Lewis acids. Living cationic polymerization of DHF was achieved using Et1.5AlCl1.5 in toluene in the presence of THF at 0 °C, whereas it has been reported that only less controlled reactions occurred at 0 °C. Monomer‐addition experiments of DHF and the block copolymerization with isobutyl vinyl ether demonstrated the livingness of the DHF polymerization: the number–average molecular weight of the polymers shifted higher with low polydispersity as the polymerization proceeded after the monomer addition. Furthermore, this base‐stabilized cationic polymerization system allowed living polymerization of ethyl 1‐propenyl ether and 4,5‐dihydro‐2‐methylfuran at ?30 and ?78 °C, respectively. In the polymerization of 2,3‐benzofuran, the long‐lived growing species were produced at ?78 °C. The obtained polymers have higher glass transition temperatures compared to poly(acyclic alkyl vinyl ether)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4495–4504, 2008  相似文献   

6.
For the precision synthesis of primary amino functional polymers, cationic polymerization of a phthalimide‐containing vinyl ether monomer precursor, 2‐vinyloxyethyl phthalimide (PIVE), was examined using a base‐assisting initiating system. Living polymerization of PIVE in CH2Cl2 in the presence of 1,4‐dioxane as an added base yielded nearly monodispersed polymers (Mw/Mn < 1.1) and higher molecular weight polymers, which have never been obtained using other initiating systems. Furthermore, block copolymers with hydrophobic or hydrophilic groups could be prepared. The deprotection of the pendant phthalimide groups gave well‐defined pH‐responsive polymers with pendant primary amino groups. Dual‐stimuli–responsive block copolymers having a pH‐responsive polyamine segment and a thermosensitive segment self‐assembled in water in response to both pH and temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1207–1213, 2010  相似文献   

7.
Several new triptycene‐containing polyetherolefins were synthesized via acyclic diene metathesis (ADMET) polymerization. The well‐established mechanism, high selectivity and specificity, mild reaction conditions, and well‐defined end‐groups make the ADMET polymerization a good choice for studying systematic variations in polymer structure. Two types of triptycene‐based monomer with varying connectivities were used in the synthesis of homopolymers, block copolymers, and random copolymers. In this way, the influence of the triptycene architecture and concentration in the polymer backbone on the thermal behavior of the polymers was studied. Inclusion of increasing amounts of triptycene were found to increase the glass transition temperature, from ?44 °C in polyoctenamer to 59 °C in one of the hydrogenated triptycene homopolymers ( H‐PT2 ). Varying the amounts and orientations of triptycene was found to increase the stiffness ( H‐PT1 ), toughness ( PT11b‐PO1 ) and ductility ( PT11ran‐PO3 ) of the polymer at room temperature. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Thermosensitive homopolymers and copolymers with hydroxy groups were synthesized via the living cationic polymerization of Si‐containing vinyl ethers. The cationic homopolymerization and copolymerization of five vinyl ethers with silyloxy groups, each with a different spacer length, were examined with a cationogen/Et1.5AlCl1.5 initiating system in the presence of an added base. When an appropriate base was added, the living cationic polymerization of Si‐containing monomers became feasible, giving polymers with narrow molecular weight distributions and various block copolymers. Subsequent desilylation gave well‐defined polyalcohols, in both water‐soluble and water‐insoluble forms. One of these polyalcohols, poly(4‐hydroxybutyl vinyl ether), underwent lower‐critical‐solution‐temperature‐type thermally induced phase separation in water at a critical temperature (TPS) of 42 °C. This phase separation was quite sensitive and reversible on heating and cooling. The phase separation also occurred sensitively with random copolymers of thermosensitive and hydrophilic or hydrophobic units, the TPS values of which in water could be controlled by the monomer feed ratio. The thermal responsiveness of this polyalcohol unit made it possible to prepare novel thermosensitive block and random copolymers consisting solely of alcohol units. One example prepared in this study was a 20 wt % aqueous solution of a diblock copolymer consisting of thermosensitive poly(4‐hydroxybutyl vinyl ether) and water‐soluble poly(2‐hydroxyethyl vinyl ether) segments, which transformed into a physical gel above 42 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3300–3312, 2003  相似文献   

9.
A self‐polymerizable quinoxaline monomer (A‐B) has been synthesized and polymerized via aromatic nucleophilic substitution reactions. An isomeric mixture of self‐polymerizable quinoxaline monomers—2‐(4‐hydroxyphenyl)‐3‐phenyl‐6‐fluoroquinoxaline and 3‐(4‐hydroxyphenyl)‐2‐phenyl‐6‐fluoroquinoxaline—was polymerized in N‐methyl‐2‐pyrrolidinone (NMP) to afford high molecular weight polyphenylquinoxaline (PPQ) with intrinsic viscosities up to 1.91 dL/g and a glass‐transition temperature (Tg) of 251 °C. A series of comonomers was polymerized with A‐B to form PPQ/polysulfone (PS), PPQ/polyetherether ketone (PEEK), and PPQ/polyethersulfone (PES) copolymers. The copolymers readily obtained high intrinsic viscosities when fluorine was displaced in NMP under reflux. However, single‐electron transfer (SET) side reactions, which limit molecular weight, played a more dominant role when chlorine was displaced instead of fluorine. SET side reactions were minimized in the synthesis of PPQ/PS copolymers through mild polymerization conditions in NMP for longer polymerization times. Thus, the Tg's of PES (Tg = 220 °C), PEEK (Tg = 145 °C), and PS (Tg = 195 °C) were raised through the incorporation of quinoxaline units into the polymer. Copolymers with high intrinsic viscosities resulted in all cases, except in the case of PPQ/PEEK copolymers when 4,4′‐dichlorobenzophenone was the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci A Part A: Polym Chem 39: 2037–2042, 2001  相似文献   

10.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   

11.
Ethylene and propylene polymerization using Ind2ZrCl2 and Ind2Zr(CH3)2/MAO catalytic systems modified by the sterically demanding bridged alicyclic alcohols, adamantan‐1‐ol, adamantan‐2‐ol, 2‐methyladamantan‐2‐ol, and fenchyl alcohol, was investigated. Lower alcohols like isopropanol completely deactivate the system, whereas in the case of catalysts modified by these voluminous alcohols only a slight decrease in the catalytic activity proportional to alcohol/metallocene molar ratio was observed. The addition of the modifiers gives rise to polymers with higher molecular weights than the nonmodified systems, but no structural changes in the polyethylenes were observed. The addition of the sterically demanding alcohols to the reaction medium changes the regioregularity of polypropylenes, but does not significantly influence their stereoregularity, at 30 °C. Propylene–ethylene copolymers containing up to 8.6% of ethylene units derived from 1,3‐insertion and significant amount of rr‐centered pentads were obtained by single‐monomer polymerization of propylene with Ind2ZrCl2/MMAO/adamantan‐1‐ol, at 70 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4248–4259, 2005  相似文献   

12.
Living cationic polymerization of a vinyl ether with a naphthyl group [2‐(2‐naphthoxy)ethyl vinyl ether, βNpOVE] was achieved using base‐assisting initiating systems with a Lewis acid. The Et1.5AlCl1.5/1,4‐dioxane or ethyl acetate system induced the living cationic polymerization of βNpOVE in toluene at 0 °C. The living nature of this reaction was confirmed by a monomer addition experiment, followed by 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) analyses. In contrast, the polymerization of αNpOVE was not fully controlled; under similar conditions, it produced polymers with broad molecular weight distributions. The 1H NMR and MALDI‐TOF‐MS spectra of the resultant poly(αNpOVE) revealed that the products had undesirable structures derived from Friedel–Crafts alkylation. The higher reactivity of αNpOVE in electrophilic substitution reactions, such as the Friedel–Crafts reaction, was attributable to the greater electron density of the naphthyl ring, which was calculated based on frontier orbital theory. The naphthyl groups significantly affected the properties of the resultant polymer. For example, the glass transition temperatures (Tg) of poly(NpOVE)s are higher by approximately 40 °C than that of poly(2‐phenoxyethyl vinyl ether). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

14.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

15.
New hydrogenated ring‐opening metathesis polymers with excellent thermal and optical properties were developed. These polymers were prepared by the ring‐opening metathesis polymerization of ester‐substituted tetracyclododecene monomers followed by the hydrogenation of the main‐chain double bond. The degree of hydrogenation was an important factor for the thermal stability of the polymers, and as complete hydrogenation as possible was necessary to obtain a thermally stable polymer. The completely hydrogenated ring‐opening polymer derived from 8‐methyl‐8‐methoxycarbonyl‐substituted monomer has a glass‐transition temperature of 171 °C and a 5% weight‐loss temperature of 446 °C. This polymer has excellent thermal and optical properties because of its bulky and unsymmetrical polycyclic structure in the main chain and is an alternative to glass or other transparent polymers such as poly(methyl methacrylate) and polycarbonate resin. This polymer has also been used in a wide variety of applications, such as optical lenses, optical disks, optical films, and optical fiber. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4661–4668, 2000  相似文献   

16.
New poly(imide–benzoxazole) copolymers were prepared directly from a dianhydride, a diacid chloride, and a bis(o‐diaminophenol) monomer in a two‐step method. In the first step, poly(amic acid–hydroxyamide) precursors were synthesized by low‐temperature solution polymerization in an organic solvent. Subsequently, the thermal cyclodehydration of the poly(amic acid–hydroxyamide) precursors at 350 °C produced the corresponding poly(imide–benzoxazole) copolymers. The inherent viscosities of the precursor polymers were around 0.19–0.33 dL/g. The cyclized poly(imide–benzoxazole) copolymers had glass‐transition temperatures in the range of 331–377 °C. The 5% weight loss temperatures ranged from 524 to 535 °C in nitrogen and from 500 to 514 °C in air. The poly(imide–benzoxazole) copolymers were amorphous, as evidenced by the wide‐angle X‐ray diffraction measurements. The structures of the precursor copolymers and the fully cyclized copolymers were characterized by Fourier transform infrared, 1H NMR, and elemental analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6020–6027, 2005  相似文献   

17.
Copolymerizations of ethylene and tricyclopentadiene (TCPD) are realized without formation of a gel with a high activity (3–18 × 106 g/molZr·h) using a catalytic system of [Ph2C(Flu)(Cp)]ZrCl2/MMAO. The monomer reactivity ratios, rethylene and rTCPD, determined through the Fineman‐Ross plot, are 6.4 and 0.044, respectively, indicating that TCPD insertion is unfavorable, negligibly allowing the successive TCPD insertions. A significant higher glass transition temperature (Tg) is attained than those observed for other reported cycloolefin copolymers at the same cycloolefin content. A Tg as high as 214 °C is attainable at 41 mol % TCPD content. The remaining double bond can be hydrogenated to saturated hydrocarbon or converted to an epoxide group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
2‐[(N‐Benzyl‐N‐methylamino)methyl]‐1,3‐butadiene (BMAMBD), the first asymmetric tertiary amino‐containing diene‐based monomer, was synthesized by sulfone chemistry and a nickel‐catalyzed Grignard coupling reaction in high purity and good yield. The bulk and solution free‐radical polymerizations of this monomer were studied. Traditional bulk free‐radical polymerization kinetics were observed, giving polymers with 〈Mn〉 values of 21 × 103 to 48 × 103 g/mol (where Mn is the number‐average molecular weight) and polydispersity indices near 1.5. In solution polymerization, polymers with higher molecular weights were obtained in cyclohexane than in tetrahydrofuran (THF) because of the higher chain transfer to the solvent. The chain‐transfer constants calculated for cyclohexane and THF were 1.97 × 10?3 and 5.77 × 10?3, respectively. To further tailor polymer properties, we also completed copolymerization studies with styrene. Kinetic studies showed that BMAMBD incorporated into the polymer chain at a faster rate than styrene. With the Mayo–Lewis equation, the monomer reactivity ratios of BMAMBD and styrene at 75 °C were determined to be 2.6 ± 0.3 and 0.28 ± 0.02, respectively. Altering the composition of BMAMBD in the copolymer from 17 to 93% caused the glass‐transition temperature of the resulting copolymer to decrease from 64 to ?7 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3227–3238, 2001  相似文献   

19.
A series of novel triphenylamine‐based polymers were synthesized from benzaldehyde and triphenylamine derivatives. All the polymers having high molecular weight are readily soluble in many organic solvents and could be solution‐cast into amorphous films. They had glass transition temperatures (Tgs) in the range of 193–217 °C, and 10% weight loss temperatures in excess of 475 °C. Cyclic voltammograms of all polymers showed reversible oxidation redox peaks and Eonset around 0.42–0.90 V, indicating that the polymers are electrochemically active and stable. In addition, all these polymers revealed photochemical characteristics in conformity with their electrochromic characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2118–2131, 2009  相似文献   

20.
A series of novel polyimides based on N,N‐di(4‐aminophenyl)‐1‐aminopyrene and aromatic or alicyclic tetracarboxylic dianhydrides were synthesized. The polymers exhibited good solubility in many polar organic solvents and could afford robust films via solution casting. The polyimides derived from aromatic dianhydrides exhibited high thermal stability and high glass‐transition temperatures (333–364 °C). Cyclic voltammetry studies of the polymer films showed that these polyimides are both p and n dopable and have multicolored electrochromic states. For the polyimides derived from alicyclic dianhydrides, they revealed a strong blue‐light emission with high fluorescence quantum yields (?PL > 45%) and a marked solvatochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号