首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of the diglycidylether of bisphenol A (DGEBA) and phthalide (PT) or 3,3′‐diphthalide (DPT) were cured using ytterbium or lanthanum triflate as catalyst. The curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and quantify the evolution of the epoxide and lactone groups. The Tg of the crosslinked materials increased when the proportion of lactone in the curing mixture decreased. The kinetics was studied with DSC experiments and isoconversional procedures. The differences in the reactivity of the systems were related to the Lewis acidity of the lanthanide salt used as initiator. The increase in the proportion of lactone leads to an increase in the reaction rate. The shrinkage was determined from the densities before and after curing and its evolution was studied by thermomechanical analysis. The materials obtained were characterized by thermogravimetry and dynamic mechanical thermal analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1711–1721, 2006  相似文献   

2.
Ytterbium and lanthanum triflates were used as catalysts to cure diglycidylether of bisphenol A with different proportions of 1,3‐dioxan‐2‐one. The curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the groups involved in the curing process. We observed the formation of a five‐membered cyclic carbonate that remains unreacted at the chain ends, because of an equilibrium process between the spiroorthocarbonates that had formed as intermediate species. The kinetics were studied by DSC experiments and analyzed with isoconversional procedures. The system catalyzed by ytterbium triflate had a higher curing rate. Thermogravimetric analysis and dynamic mechanical thermal analysis experiments were used to evaluate the properties of the materials obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5799–5813, 2005  相似文献   

3.
N,N‐Dimethylaminopyridine (DMAP) was used as initiator to cure mixtures of diglycidylether of bisphenol A (DGEBA) and 1,3‐dioxan‐2‐one (TMC) or 5,5‐dimethyl‐1,3‐dioxan‐2‐one (DMTMC). The curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the groups involved in the curing. We observed the formation of five‐membered cyclic carbonates and anionic carbonate groups that remain unreacted at the chain ends. The formation of these groups was explained by the attack of the anionic propagation species on the methylene carbon of the carbonate group, which leads to an alkyl‐oxygen rupture. By performing the cure in the thermobalance we could evaluate the loss of CO2 produced in the samples containing carbonates. The kinetics were studied by DSC and analyzed with isoconversional procedures. The addition of carbonates slows down the curing rate. Thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA) experiments were used to evaluate the properties of the materials obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2873–2882, 2006  相似文献   

4.
3,4‐Epoxycyclohexylmethyl 3,4‐epoxycyclohexane carboxylate was cured with different proportions of γ‐butyrolactone with lanthanum, samarium, and ytterbium triflates as catalysts. The curing was studied with differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the epoxide, lactone, and intermediate spiroorthoester groups. The glass‐transition temperature of the crosslinked materials was high and increased when the proportion of lactone decreased. The kinetics were studied with DSC experiments and were analyzed with isoconversional procedures. The differences in the reactivities of the systems were related to the Lewis acidity of the lanthanide salt used as the initiator. An increase in the proportion of lactone produced an increase in the reaction rate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2337‐2347, 2005  相似文献   

5.
The photocuring process of the diglycidyl ether of bisphenol A (DGEBA) with the bislactone 1,6‐dioxaspiro[4,4]nonane‐2,7‐dione (s(γ‐BL)) was studied. Triarylsulfonium hexafluoroantimonate was employed as photoinitiator. FTIR/ATR was used to study the evolution of epoxy, lactone, and intermediate spiroorthoester groups to identify the different reactions that take place during the photocuring process. Photo‐DSC and DSC were used to study the thermal evolution of the photocuring process and to assess the Tg of the fully cured material. Thermogravimetric analysis (TGA) was used to determine the thermal stability of the fully cured material. The thermomechanical properties of the materials were investigated using dynamic mechanical‐thermal analysis. Shrinkage undergone during photocuring and gelation was studied with TMA. A strong influence of the photocuring temperature on the photocuring process of the DGEBA‐ s(γ‐BL) system was observed. Differences in the reactivity of the different species were observed with respect to the thermally cured system using ytterbium triflate as cationic thermal initiator. As a consequence, photocured materials exhibited a superior thermal stability and lower flexibility. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5446–5458, 2007  相似文献   

6.
3,4‐Epoxycyclohexylmethyl 3,4‐epoxycyclohexane carboxylate (ECH) was cured with different proportions of 1,6‐dioxaspiro [4,4]nonane‐2,7‐dione (s(γ‐BL)) using lanthanum triflate as a catalyst. The shrinkage undergone during curing was monitored by means of thermomechanical analysis (TMA) in isothermal experiments. Fourier transform infrared spectroscopy in attenuated‐total‐reflection mode (FTIR/ATR) was used to study the evolution of lactone, epoxide, and intermediate spiroorthoester (SOE) groups to identify the different reactions that take place during the curing process. DSC was used to study the thermal characteristics of the curing process and to assess the glass‐transition temperature (Tg) of the cured material. The dynamic mechanical properties of the cured material were determined based on the data obtained by DMTA. An increase in the proportion of s(γ‐BL) led to a decrease in the gelation time and the shrinkage after gelation. By combining the data obtained by TMA and FTIR/ATR, it was also possible to identify the reactive processes responsible for the shrinkage. It was observed that an increase in the proportion of s(γ‐BL) also increases the speed of the curing process and modifies the structure of the material, thus giving rise to more flexible materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3421–3432, 2005  相似文献   

7.
The short chain branching distribution (SCBD) and thermal properties of ethylene/1‐pentene copolymers were studied using SEC‐FTIR and SEC‐HPer DSC. The copolymers, synthesized with Cp2ZrCl2/MAO, were fractionated using size exclusion chromatography (SEC). The infrared analysis of the fractions showed that the copolymers had—on average—higher 1‐pentene concentration in the low molecular weight range. Furthermore, the thermal properties of the SEC deposits of these copolymers on a Germanium disc were studied using high performance differential scanning calorimetry (HPer DSC). Single SEC separations were used to accumulate fractions in the microgram range that were directly analyzed with regard to their thermal properties, thus allowing us to study SCBD as well as thermal behavior simultaneously. When these fractions (with masses ranging from 10–80 μg) were analyzed using HPer DSC, good melting and crystallization temperature distributions were obtained, proving that HPer DSC can be used as a complementary method to SEC‐FTIR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2956–2965, 2007  相似文献   

8.
Scandium, ytterbium, and lanthanum triflates and boron trifluoride monoethylamine were used as cationic initiators to cure a mixture 2:1 (mol/mol) of diglycidylether of bisphenol A (DGEBA) and 7,7‐dimethyl‐6,8‐dioxaspiro[3.5]nonane‐5,9‐dione (MCB). The evolution of the epoxy and lactone during curing and the linear ester groups in the final materials were evaluated by Fourier Transform Infrared in the attenuated‐total‐reflection mode. The kinetic parameters of the curing process were calculated from DSC analysis applying isoconversional procedures. The shrinkage on curing and the thermal degradability of the materials on varying the initiator used were evaluated. The expandable character of MCB was confirmed. The materials obtained were more degradable than conventional epoxy resins due to the tertiary ester groups incorporated in the network by copolymerization. © 2008 Wiley Periodicals, Inc J Polym Sci Part A: Polym Chem 46: 1229–1239, 2008  相似文献   

9.
A new epoxy resin derived from Meldrum acid (DGMA) was synthesized by a two steps synthetic procedure and structurally characterized by the usual spectroscopic techniques and elemental analysis. Ytterbium and lanthanum triflates were tested as cationic initiators to cure this resin and its mixtures with diglycidylether of bisphenol A (DGEBA) in several proportions. By FTIR‐ATR spectroscopy the evolution of the groups, which participate in the curing was followed. The evolution of the curing and the Tg of the materials were studied by differential scanning calorimetry and the kinetic parameters were calculated applying isoconversional procedures. Ytterbium triflate led to a quicker curing than lanthanum. The thermal stability of the materials obtained was evaluated by thermogravimetry and the higher thermal degradability of the materials containing DGMA was confirmed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3088–3097, 2008  相似文献   

10.
A new phosphorus‐containing spiroorthoester, (1,4,6‐trioxaspiro [4,4] nonan‐2‐yl)‐methyl 3‐[10‐(9,10‐dihydro‐9‐oxa‐9‐phosphaphenanthrene‐10‐oxide)]‐propanoate (SOE‐P), was synthesized under microwave irradiation with a short reaction time (1 h), because classical thermal heating did not lead to the desired product. The structure of the new monomer was confirmed by 1H, 13C, and 31P. SOE‐P was homopolymerized and copolymerized with phenylglycidyl ether with ytterbium triflate as a cationic initiator in DSC experiments. These reactions were monitored by FTIR/ATR, and the formation of poly(ether‐ester)s with a pendant bulky phosphorylated group was shown. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4722–4730, 2006  相似文献   

11.
Ytterbium and lanthanum triflates were used as initiators to cure mixtures of diglycidyl ether of bisphenol A and 6,6‐dimethyl‐(4,8‐dioxaspiro[2.5]octane‐5,7‐dione) in several proportions. The evolution of the epoxy and 6,6‐dimethyl‐(4,8‐dioxaspiro[2.5]octane‐5,7‐dione) bands during curing and the linear ester groups in the final materials were evaluated with Fourier transform infrared in the attenuated‐total‐reflection mode. The use of a conventional cationic initiator, boron trifluoride monoethylamine, was also studied to test the advantages of lanthanide triflates. The shrinkage after curing and the thermal degradability of the materials with variations in the comonomer ratio and the initiator were evaluated and related to the chemical structure of the final network. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6869–6879, 2006  相似文献   

12.
Polymerization reactions of a new aldehyde‐functional benzoxazine (4HBA‐a) were investigated in detail. The curing behavior of 4HBA‐a was studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) methods. The results indicate that the disappearance of the aldehyde group from 4HBA‐a and the ring‐opening reaction of 4HBA‐a occur simultaneously. Gases evolved during the curing process of 4HBA‐a were analyzed by thermogravimetric analyzer interfaced with FTIR spectra. The elimination of CO2 is attributed to the oxidation and decarboxylation of the aldehyde groups. In addition, the crosslink sites of the aldehyde groups in the polymer structure are confirmed by model reactions. A possible reactive position should be sited in ortho position of phenol rather than ortho and/or para positions of N‐phenyl ring. Finally, the crosslinked structures of polymerized 4HBA‐a have been proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
This study aims to investigate the curing behavior of a vinyl ester‐polyester resin suspensions containing 0.3 wt % of multiwalled carbon nanotubes with and without amine functional groups (MWCNTs and MWCNT‐NH2). For this purpose, various analytical techniques, including Differential Scanning Calorimetry (DSC), Fourier infrared spectroscopy (FTIR), Raman Spectroscopy, and Thermo Gravimetric Analyzer (TGA) were conducted. The resin suspensions with carbon nanotubes (CNTs) were prepared via 3‐roll milling technique. DSC measurements showed that resin suspensions containing CNTs exhibited higher heat of cure (Q), besides lower activation energy (Ea) when compared with neat resin. For the sake of simplicity of interpretation, FTIR investigations were performed on neat vinyl ester resin suspensions containing the same amount of CNTs as resin. As a result, the individual fractional conversion rates of styrene and vinyl ester were interestingly found to be altered dependent on MWCNTs and MWCNT‐NH2. The findings obtained from RS measurements of the cured samples are highly proportional to those obtained from FTIR measurements. TGA measurements revealed that CNT modified nanocomposites have higher activation energy of degradation (Ed) compared with the cured polymer. The findings obtained revealed that CNTs with and without amine functional groups alter overall thermal curing response of the surrounding matrix resin, which may probably impart distinctive characteristics to mechanical behavior of the corresponding nanocomposites achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1511–1522, 2009  相似文献   

14.
Diglycidyl ether of bisphenol A (DGEBA) was cured with γ‐butyrolactone (γ‐BL) with ytterbium triflate as a catalyst. The curing was studied with differential scanning calorimetry, Fourier transform infrared (FTIR), and thermomechanical analysis. FTIR studies confirmed that four elemental reactions took place during the curing process: the formation of a spiroorthoester (SOE) by the reaction of DGEBA with γ‐BL, the homopolymerization of SOE, the homopolymerization of DGEBA, and the copolymerization of SOE and DGEBA. Moderate proportions of γ‐BL produced materials with higher glass‐transition temperatures, and the curing occurred with lower shrinkage after gelation because of the polymerization of SOE, with near‐zero shrinkage during the final stages of the curing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2794–2808, 2003  相似文献   

15.
The curing process of hexamethylene diisocyanate‐based polyurethane has been monitored by applying FTIR and DSC methods. A general relationship between glass‐transition temperature (Tg) and conversion of curing process has been obtained. This suggests that the reaction path and the relative reaction rates are independent of the curing temperature. The reaction kinetics of the system is analyzed using the Tg data converted to the conversion of the curing process. A set of experimental data and one theoretical model of Tg versus chemical conversion are presented to prove the assumption where a direct one‐to‐one relationship between the Tg (as measured) and the chemical conversion is obtained. Apparent activation energies (Ea) obtained by applying three different methods suggest good agreement. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2213–2220, 2000  相似文献   

16.
Three UV‐sensitive, hyperbranched‐poly(siloxysilane)‐based polymeric photoinitiators, bearing an alkyl phenone moiety linked to the surface of the hyperbranched polymer, were synthesized via the hydrosilylation of hyperbranched poly(siloxysilane) and modified UV‐sensitive compounds. Hyperbranched poly(siloxysilane) was prepared via the polyhydrosilylation of the AB2‐type monomer methylvinyldichlorosilane. The chemical structures of the polymeric photoinitiators were characterized with 1H, 13C, and 29Si NMR, elemental analysis, Fourier transform infrared, differential scanning calorimetry, UV spectrophotometry, and thermogravimetric analysis. The UV‐curing behaviors of the blends of the hyperbranched polymeric photoinitiators with UV‐curable epoxy acrylate (EA) resin were determined by Fourier transform infrared, and the results showed that the initiation efficiency of the polymeric photoinitiators was excellent and that the thermostability of the EA/polymeric photoinitiator curing systems was higher than that of the EA/photoinitiators. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3261–3270, 2006  相似文献   

17.
Conductive composites consisted of epoxy resin and polyanilines (PANIs) doped with dodecylbenzenesulfonic acid ( 1 ), dodecylsulfonic acid (2), di(2‐ethylhexyl)sulfosuccinic acid (3), and HCl were synthesized by use of Ntert‐butyl‐5‐methylisoxazolium perchlorate (5) under various reaction conditions. It was found that the composites with PANI doped with acid 2 (PANI‐2) prepared by curing with 10 mol % of reagent 5 at 80 °C for 12 h showed high electroconductivity along with the low conducting percolation threshold (3 wt % of PANI‐2). Furthermore, the composite with even ?10 wt % of PANI‐2 exhibited ?10?1 S/cm of electroconductivity. The UV–vis and IR measurements indicated that the conductive emeraldine salt form of PANI‐2 in the composite was maintained after the curing reaction. The thermal stability was studied by TGA and DSC measurements, and then, the Td10 and Tg of the composite with 5 and 10 wt % of PANI‐2 were found to be similar to those with the cured epoxy resin itself. In addition, the similar investigation with an oxetane resin instead of the epoxy resin was also carried out. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 718–726, 2006  相似文献   

18.
The major objective of this research was to modify the surface characteristics of poly(L ‐lactide) (PLA) by grafting a combination of hydrophilic polymers to produce a continuum of hydrophilicity. The PLA film was solvent cast, and the film surfaces were activated by ultra violet (UV) irradiation. A single monomer or combination of two monomers, selected from vinyl acetate (VAc), acrylic acid (AA), and acrylamide (AAm), were then grafted to the PLA film surface using a UV induced photopolymerization process. The film surfaces resulting from each reaction step were analyzed using ATR‐FTIR spectroscopy and contact angle goniometry. Results showed that AAm dominated the hydrophilicity of the film surface when copolymerized with VAc or AA, while the water contact angles for PLA films grafted with poly(vinyl acetate‐co‐acrylic acid) varied more gradually with feed composition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6534‐6543, 2006  相似文献   

19.
The syntheses and rheological behavior of ethyl hydroxyethyl cellulose (EHEC)‐based graft‐copolymers were studied. Copolymers were prepared by grafting EHEC with acrylamide (Aam) via reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyl groups of EHEC were esterified with a carboxylic acid functional chain transfer agent (CTA) to prepare EHEC‐macroCTAs with different degrees of substitution. EHEC‐macroCTAs were characterized by ATR‐FTIR, 13C NMR, and SEC, and elemental analysis was used to quantify the degree of CTA substitution. EHEC‐macroCTAs with different degrees of substitution were copolymerized with acrylamide by “grafting from” technique. Formation of new cellulose‐based copolymers was comprehensively confirmed by 1H NMR, ATR‐FTIR, and SEC measurements. Further, the associations of EHEC‐g‐PAam copolymers in water were studied at various concentrations and temperatures by means of UV–vis spectroscopy, fluorescence spectroscopy, and rheological measurements. The results indicate that copolymers have both intra and intermolecular association in water depending on the amount of grafts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1869–1879, 2009  相似文献   

20.
Poly(vinyl alcohol)‐graft‐poly(1,4‐dioxan‐2‐one) (PVA‐g‐PPDO) with designed molecular structure was synthesized by a solid‐state polymerization. The solid‐state copolymerization was preceded by a graft copolymerization of PDO initiated with PVA as a multifunctional initiator, and Sn (Oct)2 as a coininitiator/catalyst in a homogeneous molten state. The polymerization temperature was then decreased and the copolymerization was carried out in a solid state. The products prepared by solid‐state polymerization were characterized by 1H NMR and DSC, and were compared with those synthesized in the homogeneous molten state. The degree of polymerization (Dp), degree of substitution (Ds), yield and the average molecular weight of the graft copolymer with different molecular structure were calculated from the 1H NMR spectra. The results show that the crystallization process during the solid‐state polymerization may suppress the undesirable inter‐ or intramolecular side reactions, then resulting in a controlled molecular structure of PVA‐g‐PPDO. The results of DSC measurement show that the molecular structures determine the thermal behavior of the PVA‐g‐PPDO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3083–3091, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号