首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copolymerizations of ethylene with α‐olefins (i.e., 1‐hexene, 1‐octene, allylbenzene, and 4‐phenyl‐1‐butene) using the bis(β‐enaminoketonato) titanium complexes [(Ph)NC(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = Ph, R2 = CF3; and 1c : R1 = t‐Bu, R2 = CF3), activated with modified methylaluminoxane as a cocatalyst, have been investigated. The catalyst activity, comonomer incorporation, and molecular weight, and molecular weight distribution of the polymers produced can be controlled over a wide range by the variation of the catalyst structure, α‐olefin, and reaction parameters such as the comonomer feed concentration. The substituents R1 and R2 of the ligands affect considerably both the catalyst activity and comonomer incorporation. Precatalyst 1a exhibits high catalytic activity and produces high‐molecular‐weight copolymers with high α‐olefin insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6323–6330, 2005  相似文献   

2.
The copolymerizations of ethylene and cyclopentene with bis(β‐enaminoketonato) titanium complexes {[(Ph)NC(R2)CHC(R1)O]2TiCl2; R1 = CF3 and R2 = CH3 for 1a , R1 = Ph and R2 = CF3 for 1b ; and R1 = t‐Bu and R2 = CF3 for 1c } activated with modified methylaluminoxane (MMAO) as a cocatalyst were investigated. High‐molecular‐weight copolymers with cis‐1,2‐cyclopentene units were obtained. The catalyst activity, cyclopentene incorporation, polymer molecular weight, and polydispersity could be controlled over a wide range through the variation of the catalyst structure and reaction parameters, such as the Al/Ti molar ratio, cyclopentene feed concentration, and polymerization reaction temperature. The complex 1b /MMAO catalyst system exhibited the characteristics of a quasi‐living ethylene polymerization and an ethylene–cyclopentene copolymerization and allowed the synthesis of polyethylene‐block‐poly(ethylene‐co‐cyclopentene) diblock copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1681–1689, 2005  相似文献   

3.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH = N(C6F5)] [PhN = C(R1)CHC(R2)O]TiCl2 [ 3a : R1 = CF3, R2 = tBu; 3b : R1 = Me, R2 = CF3; 3c : R1 = CF3, R2 = Ph; 3d : R1 = CF3, R2 = C6H4Ph(p ); 3e : R1 = CF3, R2 = C6H4Ph(o ); 3f : R = CF3, R2 = C6H4Cl(p ); 3g : R1 = CF3; R2 = C6H3Cl2(2,5); 3h : R1 = CF3, R2 = C6H4Me(p )] were investigated as catalysts for ethylene (co)polymerization. In the presence of modified methylaluminoxane as a cocatalyst, these complexes showed activities about 50%–1000% and 10%–100% higher than their corresponding bis(β‐enaminoketonato) titanium complexes for ethylene homo‐ and ethylene/1‐hexene copolymerization, respectively. They produced high or moderate molecular weight copolymers with 1‐hexene incorporations about 10%–200% higher than their homoligated counterpart pentafluorinated FI‐Ti complex. Among them, complex 3b displayed the highest activity [2.06 × 106 g/molTi?h], affording copolymers with the highest 1‐hexene incorporations of 34.8 mol% under mild conditions. Moreover, catalyst 3h with electron‐donating group not only exhibited much higher 1‐hexene incorporations (9.0 mol% vs. 3.2 mol%) than pentafluorinated FI‐Ti complex but also generated copolymers with similar narrow molecular weight distributions (M w/M n = 1.20–1.26). When the 1‐hexene concentration in the feed was about 2.0 mol/L and the hexene incorporation of resultant polymer was about 9.0 mol%, a quasi‐living copolymerization behavior could be achieved. 1H and 13C NMR spectroscopic analysis of their resulting copolymers demonstrated the possible copolymerization mechanism, which was related with the chain initiation, monomer insertion style, chain transfer and termination during the polymerization process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2787–2797  相似文献   

4.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐tBu‐2‐OC6H3CH?N(C6F5)] [PhN?C(CF3)CHCRO]TiCl2 [ 3a : R = Ph, 3b : R = C6H4Cl(p), 3c : R = C6H4OMe(p), 3d : R = C6H4Me(p), 3e : R = C6H4Me(o)] were synthesized and characterized. Molecular structures of 3b and 3c were further confirmed by X‐ray crystallographic analyses. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts displayed favorable ability to incorporate 5‐vinyl‐2‐norbornene (VNB) and 5‐ethylidene‐2‐norbornene (ENB) into the polymer chains, affording high‐molecular weight copolymers with high‐comonomer incorporations and alternating sequence under the mild conditions. The comonomer concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resultant copolymer. At initial comonomer concentration of higher than 0.4 mol/L, the titanium complexes with electron‐donating groups in the β‐enaminoketonato moiety mediated room‐temperature living ethylene/VNB or ENB copolymerizations. Polymerization results coupled with density functional theory calculations suggested that the highly controlled living copolymerization is probably a consequence of the difficulty in chain transfer of VNB (or ENB)‐last‐inserted species and some characteristics of living ethylene polymerization under limited conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Three heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH?N(C6F5)][(p‐XC6H4)N?C(But)CHC(CF3)O]TiCl2 ( 3a : X = F, 3b : X = Cl, 3c : X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the β‐enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. When the norbornene concentration in the feed is higher than 0.4 mol/L, the heteroligated catalysts mediated the living copolymerization of ethylene with norbornene to form narrow molecular weight distribution copolymers (Mw/Mn < 1.20), which suggested that chain termination or transfer reaction could be efficiently suppressed via the addition of norbornene into the reaction medium. Polymer yields, catalytic activity, molecular weight, and norbornene incorporation can be controlled within a wide range by the variation of the reaction parameters such as comonomer content in the feed, reaction time, and temperature. ©2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6072–6082, 2009  相似文献   

6.
Five novel vanadium(III) complexes [PhN = C(R2)CHC(R1)O]VCl2(THF)2 ( 4a : R1 = Ph, R2 = CF3; 4b : R1 = t‐Bu, R2 = CF3; 4c : R1 = CF3, R2 = CH3; 4d : R1 = Ph, R2 = CH3; 4e : R1 = Ph, R2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolV h bar and weight‐average molecular weights higher than 173 kg/mol were observed under mild conditions. The copolymerizations of ethylene and norbornene or 1‐hexene with the precatalysts were also explored, which leads to high molecular weight copolymers with high comonomer incorporation. Catalyst activity, comonomer incorporation, and polymer molecular weight as well as polydispersity index can be controlled over a wide range by the variation of precatalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2038–2048, 2008  相似文献   

7.
Bis(β‐enaminoketonato) vanadium(III) complexes ( 2a–c ) [O(R1)C?C(H)xC(R2)?NC6H5]2VCl(THF) and the corresponding vanadium(IV) complexes ( 3a–c ) [O(R1)C?C(H)xC(R2)? NC6H5]2VO (R1 = ? (CH2)4? , R2 = H, x = 0, a ; R1 = ? C6H5, R2 = H, x = 1, b ; R1 = ? C6H5, R2 = ? C6H5, x = 1, c ) have been synthesized from VCl3(THF)3 and VOCl2(THF)2, respectively, by treating with 2.0 equivalent β‐enaminoketonato ligands in tetrahydrofuran. Structures of 2b and 3a–c were further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–c and 3a–c exhibited high catalytic activities (up to 23.76 kg of PE/mmolV h bar), and afforded polymers with unimodal molecular weight distributions at 70 °C indicating the good thermal stability. The catalytic behaviors were influenced not only by the oxidation state of the catalyst precursors but also by the ligand structures. Complexes 2a–c and 3a–c were also effective catalyst precursors for ethylene/1‐hexene copolymerization. The influence of polymerization parameters such as reaction temperature, Al/V molar ratio and hexene feed concentration on the ethylene/hexene copolymerization behaviors have bee also investigated in detail. In addition, the agents such as AlMe3, AliBu3, MeMgBr, MgCl2, and ZnEt2 were applied to control the molecular weight and molecular weight distribution modal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3062–3072, 2010  相似文献   

8.
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008  相似文献   

9.
(t‐BuNSiMe2Flu)TiMe2 ( 1 ) activated with Me3Al‐free methylaluminoxane (dried MAO) which conducts vinyl addition polymerization of norbornene (N) with very high activity was applied for homopolymerization of N derivatives (i.e., 5‐vinyl‐2‐norbornene (5V2N), 5‐ethylidene‐2‐norbornene (5E2N), dicyclopentadiene (DCPD)) at 40 °C. The activities for the N derivatives were about two orders of magnitude lower than that for N and decreased in the following order: 5E2N ? 5V2N ? DCPD. Copolymerization of ethene (E) and 5E2N under an atmospheric pressure of E was then conducted by 1 ‐dried MAO. The copolymerization proceeded with better activity than the homopolymerization of 5E2N and gave poly(E‐co‐5E2N) with narrow molecular weight distribution. The content of the ethylidene group in poly(E‐co‐5E2N) was controlled by the feed ratio of 5E2N/E. The Tg value of the copolymer changed from 70 °C to 155 °C according to the 5E2N content from 27 mol % to 68 mol %. The addition of N as a third monomer to the E‐5E2N copolymerization improved the activity and raised the Tg values of the terpolymer above 200 °C. The content of 5E2N was controlled by the 5E2N/N ratio with keeping the high Tg values. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4581–4587, 2007  相似文献   

10.
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
A series of novel vanadium(III) complexes bearing bidentate phenoxy‐phosphine oxide [O,P=O] ligands, (2‐R1‐4‐R2‐6‐Ph2P=O‐C6H2O)VCl2(THF)2 ( 2a : R1 = R2 = H; 2b : R1 = F, R2 = H; 2c : R1 = tBu, R2 = H; 2d : R1 = Ph, R2 = H; 2e : R1 = R2 = Me; 2f : R1 = R2 = tBu; 2g : R1 = R2 = CMe2Ph) have been synthesized by adding 1 equiv of the ligand to VCl3(THF)3 dropwise in the presence of excess triethylamine. Under the same conditions, the adding of VCl3(THF)3 to 2.0 equiv of the ligand afforded vanadium(III) complexes bearing two [O,P=O] ligands ( 3c , 3f ). All the complexes were characterized by FTIR and mass spectra as well as elemental analysis. Structures of complexes 2c and 3c were further confirmed by X‐ray crystallographic analysis. On activation with Et2AlCl and ethyl trichloroacetate, these complexes displayed high catalytic activities for ethylene polymerization (up to 26.4 kg PE/mmolV·h·bar) even at high reaction temperature (70 °C) indicative of high thermal stability, and produced high molecular weight polymers with unimodal molecular weight distributions. Additionally, the complexes with optimized structure exhibited high catalytic activities for ethylene/1‐hexene copolymerization. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled in a wide range via the variation of catalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and reaction temperature. The monomer reactivity ratios rE and rH were determined according to 13C NMR spectra, which indicated these complexes preferred ethylene to 1‐hexene in the copolymerization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5298–5306  相似文献   

12.
A series of novel titanium(IV) complexes bearing tetradentate [ONNO] salan type ligands: [Ti{2,2′‐(OC6H3‐5‐t‐Bu)2‐NHRNH}Cl2] (Lig1TiCl2: R = C2H4; Lig2TiCl2: R = C4H8; Lig3TiCl2: R = C6H12) and [Ti{2,2′‐(OC6H2‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4TiCl2) were synthesized and used in the (co)polymerization of olefins. Vanadium and zirconium complexes: [ M{2,2′‐(OC6H3‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4VCl2: M = V; Lig4ZrCl2: M = Zr) were also synthesized for comparative investigations. All the complexes turned out active in 1‐octene polymerization after activation by MAO and/or Al(i‐Bu)3/[Ph3C][B(C6F5)4]. The catalytic performance of titanium complexes was strictly dependent on their structures and it improves for the increasing length of the aliphatic linkage between nitrogen atoms (Lig1TiCl2 << Lig2TiCl2 < Lig3TiCl2) and declines after adding additional tert‐Bu group on the aromatic rings (Lig3TiCl2 < Lig4TiCl2). The activity of all titanium complexes in ethylene polymerization was moderate and the properties of polyethylene was dependent on the ligand structure, cocatalyst type, and reaction conditions. The Et2AlCl‐activated complexes gave polymers with lover molecular weights and bimodal distribution, whereas ultra‐high molecular weight PE (up to 3588 kg mol?1) and narrow MWD was formed for MAO as a cocatalyst. Vanadium complex yielded PE with the highest productivity (1925.3 kg molv?1), with high molecular weight (1986 kg mol?1) and with very narrow molecular weight distribution (1.5). Copolymerization tests showed that titanium complexes yielded ethylene/1‐octene copolymers, whereas vanadium catalysts produced product mixtures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2111–2123  相似文献   

13.
A series of C1‐symmetric titanium complexes with both salicylaldiminato and β‐enaminoketonato as the ligands have been synthesized and investigated as the catalysts for propylene polymerization. In the presence of dried methylaluminoxane (dMAO), the complex with bulky substituent tert‐butyl ortho to alkyl oxygen can promote living polymerization of propylene with improved catalytic activity at ambient temperature, producing high molecular weight syndiotactic polypropylenes (rrrr 90.2%) with narrow molecular weight distributions (Mw/Mn = 1.07–1.22), via a propagation of 1,2‐insertion of monomer and chain‐end control of stereoselectivity. The propagation of polymer chain is completely different from that mediated by FI catalysts (the titanium complexes with phenoxy‐imine chelate ligands) which favor 2,1‐insertion of monomer. The interaction between a fluorine and a β‐hydrogen of a growing polymer chain, negligible chain transfer to monomer and dMAO without any free AlMe3 were responsible for the achievement of living propylene polymerization. The substituent ortho to alkyl oxygen determined the stereo structure of the resultant polypropylene. In the case of less steric congested complexes with two nonequivalent coordination positions, the growing polymer chain might swing back to the favorite coordination position (site‐epimerization), forming m dyads regioirregular units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Copolymerization of ethylene with isoprene (IP) catalyzed by 1,4‐dithabutanediyl‐linked bis(phenolato) titanium complexes 1 and 2 and methylaluminoxane (MAO) produced exclusively ethylene‐IP copolymers with good activity. The copolymer microstructure can be varied by changing the ratio between the monomers in the copolymerization feed, affording copolymers with IP content ~60%. The copolymer microstructure was fully elucidated by 13C‐NMR spectroscopy of the copolymers with various IP content revealing a strong tendency to the alternating microstructure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4200–4206, 2010  相似文献   

15.
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009  相似文献   

16.
A new bis(phenoxy‐imine)Zr complex has been developed. This complex in conjunction with iBu3Al/Ph3CB(C6F5)4 at 70°C produces ultrahigh‐molecular‐weight amorphous ethylene/propylene copolymer with a weight‐average molecular weight of 10 200 000 g/mol versus polystyrene standards, which represents the highest molecular weight known for linear, synthetic copolymers to date.  相似文献   

17.
Copolymerization of olefins (ethylene and propylene) and 5‐hexen‐1‐ol pretreated with alkylaluminum was performed using [dimethysilylbis(9‐fluorenyl)]zirconium dichloride/methylaluminoxane as the catalyst. The copolymerization required extra addition of alkylaluminum to prevent deactivation of the catalyst when 5‐hexen‐1‐ol was pretreated with trimethylaluminum, whereas the triisobutylaluminum‐treated system did not require any addition of alkylaluminum. The molecular weight of the copolymer depended on the kind of alkylaluminum compound (masking reagent, additive, and cocatalyst). 13C NMR analysis proved that poly(ethylene‐co‐5‐hexen‐1‐ol) containing 50 mol % of 5‐hexen‐1‐ol acted as an alternating copolymer, whereas the poly(propylene‐co‐5‐hexen‐1‐ol) acted as a random copolymer. The surface property of the copolymers was simply evaluated by means of water drop contact angle measurement. It was found that the copolymers containing large amounts of 5‐hexen‐1‐ol units showed good hydrophilic properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 52–58, 2004  相似文献   

18.
Norbornene copolymers functionalized with methyl ester group or carboxy group are facilely synthesized by the copolymerization of norbornene and 7‐octenyldiisobutylaluminum (ODIBA) with ansa‐dimethylsilylene(fluorenyl)(t‐butylamido)dimethyltitanium ( 1 ) activated by Ph3CB(C6F5)4, and the sequential CO2/methanolysis reactions or CO2/hydrolysis reactions, respectively. The methanolysis and the hydrolysis are simply switched by engaging acidic methanol or acidic aqueous acetone as the quenching/washing solution, respectively. Meanwhile, the increase of ODIBA in the copolymerization abruptly decreases the yield and number–average molecular weight (Mn) of the product. However, the addition of triisobutylaluminum (8 mM) and the use of excess Ph3CB(C6F5)4 (twofold of 0.4 mM of 1 ) significantly increase the yield, accompanying the increase in the Mn and the narrowing of the molecular weight distribution (Mw/Mn), especially in the case of the use of excess Ph3CB(C6F5)4. The yield (g polymer/g monomers), Mn, and Mw/Mn reach up to 0.82, 341,000, and 1.46, respectively, at a copolymerization condition. The carboxy groups in the norbornene copolymers are controlled in the range of 0–1.8 mol % in high polymer yields with high Mn and narrow Mw/Mn accompanied by the decrease in the contact angle with water from 104° to 89°. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5085–5090  相似文献   

19.
Three new three‐dimensional geometry bulky α‐diimine ligands ( L ) containing electron‐donating and electron‐withdrawing groups, 9,10‐dihydro‐9,10‐ethanoanthracene‐11,12‐di(Ar)imine (Ar = p‐PhCH3, L1 ; Ar=p‐PhCl, L2 ; Ar=p‐PhCF3, L3 .), and their corresponding single Ni(II) catalysts, NiL2Br2 ( Ni(L1)2Br2 , Ni(L2)2Br2 , and Ni(L3)2Br2 , were synthesized and the molecular structure were determined by X‐ray crystallography. All NiL2Br2 catalysts were tested for norbornene polymerization and copolymerization of norbornene with 1‐alkene after activation with B(C6F5)3. The results that the polymerization catalytic activities for norbornene up to 105 gpolymer/molNi·h even at 140 °C, shown that NiL2Br2 catalysts have high thermal stability. Meanwhile, catalysts with electron‐withdrawing groups could achieve higher reactivity. The obtained poly(NB‐co‐1‐alkene)s were confirmed to be vinyl‐addition copolymers and noncrystalline. All copolymers exhibited high 1‐alkenes insertion ratio, good thermal stability (Td > 375 °C), high molecular weight (up to 105 g/mol), good solubility in common organic solvents and could be processed into films with good transparency in the visible region. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3495–3505  相似文献   

20.
We have kinetically elucidated the origins of activity enhancement because of the addition of comonomer in Ziegler‐Natta propylene polymerization, using stopped‐flow and continuously purged polymerization. Stopped‐flow polymerization (with the polymerization time of 0.1–0.2 s) enabled us to neglect contributions of physical phenomena to the activity, such as catalyst fragmentation and reagent diffusion through produced polymer. The propagation rate constant kp and active‐site concentration [C*] were compared between homopolymerization and copolymerization in the absence of physical effects. kp for propylene was increased by 30% because of the addition of a small amount of ethylene, whereas [C*] was constant. On the contrary, both kp (for propylene) and [C*] remained unchanged by the addition of 1‐hexene. Thus, only ethylene could chemically activate propylene polymerization. However, continuously purged polymerization for 30 s resulted in much more significant activation by the addition of comonomer, clearly indicating that the activation phenomenon mainly arises from the physical effects. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号