首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vinylcyclohexane (VCH) was copolymerized with ethene and propene using methylaluminoxane‐activated metallocene catalysts. The catalyst precursor for the ethene copolymerization was rac‐ethylenebis(indenyl)ZrCl2 ( 1 ). Propene copolymerizations were further studied with Cs‐symmetric isopropylidene(cyclopentadienyl)(fluorenyl)ZrCl2 ( 2 ), C1‐symmetric ethylene(1‐indenyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 3 ), and “meso”‐dimethylsilyl[3‐benzylindenyl)(2‐methylbenz[e]indenyl)]ZrCl2 ( 4 ). Catalyst 1 produced a random ethene–VCH copolymer with very high activity and moderate VCH incorporation. The highest comonomer content in the copolymer was 3.5 mol %. Catalysts 1 and 4 produced poly(propene‐co‐vinylcyclohexane) with moderate to good activities [up to 4900 and 15,400 kg of polymer/(mol of catalyst × h) for 1 and 4 , respectively] under similar reaction conditions but with fairly low comonomer contents (up to 1.0 and 2.0% for 1 and 4 , respectively). Catalysts 2 and 3 , both bearing a fluorenyl moiety, gave propene–VCH copolymers with only negligible amounts of the comonomer. The homopolymerization of VCH was performed with 1 as a reference, and low‐molar‐mass isotactic polyvinylcyclohexane with a low activity was obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6569–6574, 2006  相似文献   

2.
The behaviors of rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 ( 1 ) and Cp2ZrCl2 ( 2 ) activated by methylaluminoxane in ethene/1,4‐pentadiene copolymerization are compared. In the presence of 1 , inserted methylene‐1,3‐cyclobutane units, a large number of crosslinks, and a small number of methylene‐1,3‐cyclohexane units are obtained. Differently, a polyethene containing only 1,3‐cyclohexane rings is achieved with 2 as the catalytic precursor. Polymer microstructures are compared with those obtained with 1 and 2 in ethene/1,6‐heptadiene copolymerization, which leads only to polyethene containing cyclohexane rings. A tentative rationalization of the experimental data is reported. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5525–5532, 2006  相似文献   

3.
C2‐symmetric group 4 metallocenes based catalysts (rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 (1) , rac‐[CH2(1‐indenyl)2]ZrCl2 (2) and rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]TiCl2 (3) ) are able to copolymerize styrene and 1,3‐butadiene, to give products with high molecular weight. In agreement with symmetry properties of metallocene precatalysts, styrene homosequences are in isotactic arrangements. Full determination of microstructure of copolymers was obtained by 13C NMR and FTIR analysis and it reveals that insertion of butadiene on styrene chain‐end happens prevailingly with 1,4‐trans configuration. In the butadiene homosequences, using zirconocene‐based catalysts, the 1,4‐trans arrangement is favored over 1,4‐cis, but the latter is prevailing in the presence of titanocene (3) . Diad composition analysis of the copolymers makes possible to estimate the reactivity ratios of copolymerization: zirconocenes (1) and (2) produced copolymers having r1 × r2 = 0.5 and 3.0, respectively (where 1 refers to styrene and 2 to butadiene); while titanocene (3) gave tendencially blocky styrene–butadiene copolymers (r1 × r2 = 8.5). The copolymers do not exhibit crystallinity, even when they contain a high molar fraction of styrene. Probably, comonomer homosequences are too short to crystallize (ns = 16, in the copolymer at highest styrene molar fraction). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1476–1487, 2008  相似文献   

4.
The stepwise reaction of Me2SiCl2 with K[C5H3 tBuMe‐3] or Li[C9H7] and then with K[C9H6CH2CH2‐ NMe2‐1] followed by double deprotonation with NaH or LiBu, yields the two dimethylsilicon bridged cyclopentadienyl‐indenyl and indenyl‐indenyl donor‐functionalized ligand systems K2[(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 1 ), and Li2[(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 2 ), respectively. Treatment of 1 with YCl3(THF)3, SmCl3(THF)1.77, TmI3(DME)3, and LuCl3(THF)3 gives the mixed ansa‐metallocenes [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LnX (X = Cl, Ln = Y ( 3 ), Sm ( 4 ), Lu ( 5 ); X = I, Ln = Tm ( 6 )), respectively. The reaction of 2 with LuCl3(THF)3 yields [(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LuCl ( 7 ). Compound 4 reacts with LiMe to give the corresponding alkyl derivative [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]Sm(CH3) ( 8 ). The new complexes were characterized by elemental analyses, MS spectrometry, and NMR spectroscopy. The molecular structures of 5 and 6 were determined by single crystal X‐ray diffraction.  相似文献   

5.
C2‐symmetric zirconocenes activated by methylaluminoxane were utilized as catalysts in the polymerization of 1,3‐diolefins. The results indicate that the most crowded catalytic precursor rac[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 ( 1 ) is also the most active one, giving 1,4‐polymerization of 1,3‐butadiene and (Z)‐1,3‐pentadiene and 1,2‐polymerization of (E)‐1,3‐pentadiene and 4‐methyl‐1,3‐pentadiene. Probably, the different behavior of 1 with respect to other C2‐symmetric zirconocenes utilized is due to the different stability of the bond between the last inserted monomer unit and the metal, as well as to the coordination of incoming monomer.  相似文献   

6.
Because of the great economic interest in propylene‐based polymers and the possibility of designing materials with desired properties with metallocene catalyst mixtures, we investigated the characteristics of polypropylenes produced by mixtures of SiMe2Ind2ZrCl2: dimethylsilane‐bis(indenyl) zirconocene ( 1 ) and Et(Flu)(Cp)ZrCl2: ethylidene (fluorenyl cyclopentadienyl) zirconocene ( 2 ) in different proportions. The polymers were fractionated with solvents, and the fractions were characterized. We observed that the polymers produced by the different mixed systems showed lower weight‐average molecular weights and only slightly broader molecular weight distributions than polypropylenes synthesized by the individual catalysts. We concluded that catalyst 1 acted independently of catalyst 2 , producing polymers with the same isotacticity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1478–1485, 2003  相似文献   

7.
Activated with methylaluminoxane (MAO), phenoxy‐based zirconium complexes bis[(3‐tBu‐C6H3‐2‐O)‐CH?NC6H5]ZrCl2, bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?NC6H5] ZrCl2, and bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?N(2‐F‐C6H4)]ZrCl2 for the first time have been used for the copolymerization of ethylene with 10‐undecen‐1‐ol. In comparison with the conventional metallocene, the phenoxy‐based zirconium complexes exhibit much higher catalytic activities [>107 g of polymer (mol of catalyst)?1 h?1]. The incorporation of 10‐undecen‐1‐ol into the copolymers and the properties of the copolymers are strongly affected by the catalyst structure. Among the three catalysts, complex c is the most favorable for preparing higher molecular weight functionalized polyethylene containing a higher content of hydroxyl groups. Studies on the polymerization conditions indicate that the incorporated commoner content in the copolymers mainly depends on the comonomer concentration in the feed. The catalytic activity is slightly affected by the Al(MAO)/Zr molar ratio but decreases greatly with an increase in the polymerization temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5944–5952, 2005  相似文献   

8.
The polymerization of ethylene was studied by using a series of polysiloxane-bridged dinuclear zirconocenes [(SiMe2O)nSiMe2(C5H4)2][(C9H7)ZrCl2]2 ( 7 , n = 1 ; 8 , n = 2; 9 , n = 3), the corresponding mononuclear zirconocene (C5H5)(C9H7)ZrCl2, 10 , and the pentamethylene-bridged dinuclear zirconocene [(CH2)5(C5H4)2][(C9H7)-ZrCl2]2, 13 . From the polymerization studies using these catalysts it was found that (i) activities of the polysiloxane dinuclear zirconocenes 7–9 wre lower than that of the corresponding mononuclear zirconocene 10 , (ii) molecular weights of polyethylenes produced by the dinuclear metallocenes are greater than that of polyethylene produced by the mononuclear metallocene, (iii) the complex 9 holding the longest bridging ligand exhibited the highest activity but produced a polymer having the smallest molecular weight among the polysiloxane-bridged dinuclear zirconocenes, and (iv) the pentamethylene-bridged dinuclear metallocene 13 showed higher activity than the complexes 7–9 and the mononuclear zirconocene 10 . The formation of the lowest molecular weight of polyethylene by 9 was attributed to the influence of electron withdrawal caused by the Lewis acid–base interaction between the acidic aluminum of the cocatalyst and the basic oxygen at the polysiloxane linkage as well as the lack of a steric problem. An increase in steric congestion around the metal center led to not only a decrease in catalytic activity due to preventing facile monomer access to the active site but also an increase in the molecular weight of polyethylenes due to supressing β-H elimination. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3717–3728, 1997  相似文献   

9.
Tandem catalysis offers a promising synthetic route to the production of linear low‐density polyethylene. This article reports the use of homogeneous tandem catalytic systems for the synthesis of ethylene/1‐hexene copolymers from ethylene stock as the sole monomer. The reported catalytic systems employ the tandem action between an ethylene trimerization catalyst, (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/modified methylaluminoxane (MMAO), and a copolymerization metallocene catalyst, [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO or rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 ( 3 )/MMAO. During the reaction, 1 /MMAO in situ generates 1‐hexene with high activity and high selectivity, and simultaneously 2 /MMAO or 3 /MMAO copolymerizes ethylene with the produced 1‐hexene to generate butyl‐branched polyethylene. We have demonstrated that, by the simple manipulation of the catalyst molar ratio and polymerization conditions, a series of branched polyethylenes with melting temperatures of 60–128 °C, crystallinities of 5.4–53%, and hexene percentages of 0.3–14.2 can be efficiently produced. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4327–4336, 2004  相似文献   

10.
Long‐chain‐branched polyethylene with a broad or bimodal molecular weight distribution was synthesized by ethylene homopolymerization via a novel nickel(II) α‐diimine complex of 2,3‐bis(2‐phenylphenyl)butane diimine nickel dibromide ({[2‐C6H4(C6H5)]? N?C? (CH3)C(CH3)?N? [2‐C6H4(C6H5)]}NiBr2) that possessed two stereoisomers in the presence of modified methylaluminoxane. The influences of the polymerization conditions, including the temperature and Al/Ni molar ratio, on the catalytic activity, molecular weight and molecular weight distribution, degree of branching, and branch length of polyethylene, were investigated. The resultant products were confirmed by gel permeation chromatography, gas chromatography/mass spectrometry, and 13C NMR characterization to be composed of higher molecular weight polyethylene with only isolated long‐branched chains (longer than six carbons) or with methyl pendant groups and oligomers of linear α‐olefins. The long‐chain‐branched polyethylene was formed mainly through the copolymerization of ethylene growing chains and macromonomers of α‐olefins. The presence of methyl pendant groups in the polyethylene main chain implied a 2,1‐insertion of the macromonomers into [Ni]? H active species. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1325–1330, 2005  相似文献   

11.
An iron oligomerization catalyst, [(2‐ArN?C(Me))2C5H3N]FeCl2 [Ar = 2,6‐C6H3(F)2], was combined with rac‐ethylene bis(indenyl)zirconium (IV) dichloride [rac‐Et(Ind)2ZrCl2] to prepare linear low‐density polyethylene (LLDPE) by the in situ copolymerization of ethylene. A series of LLDPEs with different properties were prepared by the alteration of the reaction temperature, Fe/Zr molar ratio, Al/(Fe + Zr) molar ratio, and reaction time. The structures of the polymers were characterized with differential scanning calorimetry, 13C NMR, gel permeation chromatography (GPC), and so forth. The melting points, crystallizations, and densities of the resulting products increased, and the average branching degree decreased, as the reaction temperature, Al/(Fe + Zr) ratio, and reaction time increased. The melting points, crystallizations, and densities of the polymers decreased, and the average branching degree increased, when the Fe/Zr ratio increased. The 13C NMR and GPC results showed that there were no unreacted α‐olefins remaining in the resulting polymers because the percentage of low‐molar‐mass sections (C4–C10) of the oligomers obtained with this catalyst was very high (>70%). In addition, the formation of polymers with two melting points under different reaction conditions was examined in detail, and the results indicated that the two melting points of the polymers could be attributed to polyethylene with different branches. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 984–993, 2005  相似文献   

12.
Stereoblock polypropylenes comprising of iPP and sPP segments are synthesized by polymerization of the following binary system of metallocenes: the Cs‐symmetric [2,7‐t‐Bu2(Flu)2Ph2C(Cp)ZrCl2] and the C2‐symmetric rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2ZrCl2. Blends of samples made either by each catalyst individually (solution blend) with materials obtained with the mixed catalyst system (reactor blend) are compared. The simultaneous presence of MAO and DEZ, enhancing fast and reversible transfer of the growing chains between the two active centers, leads to the formation of a stereoblock microstructure. In this case, low molecular weight polymers are obtained. The junction between the blocks is qualitatively observed in 13C NMR. When made in toluene, the stereoblock material consists of a majority of syndiotactic sequences, whereas the ratio is more equilibrated when the polymerization was conducted in the more polar chlorobenzene. This is confirmed by the results obtained with 13C NMR, CRYSTAF, HT HPLC, DSC, SSA, WAXD, and optical microscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1422–1434  相似文献   

13.
The oligomerization and polymerization of 1‐pentene using Cp2ZrCl2, Cp2HfCl2, [(CH3)5C5]2ZrCl2, rac‐[C2H4(Ind)2]ZrCl2, [(CH3)2Si(Ind)2]ZrCl2, (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2, Cp2ZrCl{O(Me)CW(CO)5}, Cp2ZrCl(OMe) and methylaluminoxane (MAO) has been studied. The degree of polymerization was highly dependent on the metallocene catalyst. Oligomers ranging from the dimer of 1‐pentene to polymers of poly‐1‐pentene with a molar mass Mw = 149000 g/mol were formed. Cp2ZrCl{O(Me)CW(CO)5} is a new highly active catalyst for the oligomerization of 1‐pentene to low molecular weight products. The activity decreases in the order Cp2ZrCl{O(Me)CW(CO)5} > Cp2ZrCl2 > Cp2ZrCl(OMe). Furthermore, poly‐1‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene were synthesized with (CH3)2Si(2‐methyl‐benz[e]indenyl)2ZrCl2 and methylaluminoxane (MAO) at different temperatures. The temperature dependence of the molar mass can be described by a common exponential decay function irrespective of the investigated monomer.  相似文献   

14.
Synthesis and Properties of Metallocene and Half Sandwich Complexes with Pyridine‐containing Bridges or Side Chains 2,6‐Bis(chlormethyl)pyridine ( 1 ) reacts with 4 equivalents of indenyllithium with formation of 2,6bis(methylenindenyl)pyridine‐dilitihium ( 2 ) from which with MCl4 · 2 thf (M = Zr, Hf) the corresponding metallocene dichlorides 3 and 4 can be obtained. At reaction of 1 with 2 equivalents of C5H5Na only one Cl atom is replaced by a C5H5Na unit. Following reactions with indenyl lithium and ZrCl4 · 2 thf give the unsymmetric complex [C5H3N–2,6‐CH2‐(2‐C5H4)–(6‐C9H6)ZrCl2] ( 7 ). – Picolylcyclopentadiene ( 8 ) and 1‐(picolyl)‐indene ( 9 ) are synthesized from 2‐chlomethyl‐pyridinium chloride and C5H5Na or indenyl lithium respectively, which are transferred in the half sandwich complexes (C5H4N–CH2C5H4)MCl3 (M = Ti 10 , Zr 11 ) and (C5H4–CH2C9H6)ZrCl3 ( 12) . The compounds were characterized by elemental analysis, 1H n.m.r., ms, ir, and raman spectra. N → M interactions are discussed.  相似文献   

15.
Summary: Copolymerizations of propene and buta‐1,3‐diene performed in the presence of rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 and methylaluminoxane (MAO) have been investigated. Buta‐1,3‐diene gives prevailingly primary coordination to the metal, producing overall 1,2 units. Cyclopropane and cyclopentane rings, although in low amounts, are also obtained. The presence of butadiene would be responsible for some regioirregular 2,1‐inserted propene units, which at high temperatures give rearrangement to 3,1 units.

  相似文献   


16.
Ethylene (E), propylene (P), and 1‐pentene (A) terpolymers differing in monomer composition ratio were produced, using the metallocenes rac‐ethylene bis(indenyl) zirconium dichloride/methylaluminoxane (rac‐Et(Ind)2ZrCl2/MAO), isopropyl bis(cyclopentadienyl)fluorenyl zirconium dichloride/methylaluminoxane (Me2C(Cp)(Flu)ZrCl2/MAO, and bis(cyclopentadienyl)zirconium dichloride, supported on silica impregnated with MAO (Cp2ZrCl2/MAO/SiO2/MAO) as catalytic systems. The catalytic activities at 25 °C and normal pressure were compared. The best result was obtained with the first catalyst. A detailed study of 13C NMR chemical shifts, triad sequences distributions, monomer‐average sequence lengths, and reactivity ratios for the terpolymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 947–957, 2008  相似文献   

17.
The acid‐catalyzed reaction between formaldehyde and 1H‐indene, 3‐alkyl‐ and 3‐aryl‐1H‐indenes, and six‐membered‐ring substituted 1H‐indenes, with the 1H‐indene/CH2O ratio of 2 : 1, at temperatures above 60° in hydrocarbon solvents, yields 2,2′‐methylenebis[1H‐indenes] 1 – 8 in 50–100% yield. These 2,2′‐methylenebis[1H‐indenes] are easily deprotonated by 2 equiv. of BuLi or MeLi to yield the corresponding dilithium salts, which are efficiently converted into ansa‐metallocenes of Zr and Hf. The unsubstituted dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1H‐inden‐1‐yl]}zirconium ([ZrCl2( 1′ )]) is the least soluble in organic solvents. Substitution of the 1H‐indenyl moieties by hydrocarbyl substituents increases the hydrocarbon solubility of the complexes, and the presence of a substituent larger than a Me group at the 1,1′ positions of the ligand imparts a high diastereoselectivity to the metallation step, since only the racemic isomers are obtained. Methylene‐bridged ‘ansa‐zirconocenes’ show a noticeable open arrangement of the bis[1H‐inden‐1‐yl] moiety, as measured by the angle between the planes defined by the two π‐ligands (the ‘bite angle’). In particular, of the ‘zirconocenes’ structurally characterized so far, the dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[4,7‐dimethyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 5′ )] is the most open. The mixture [ZrCl2( 1′ )]/methylalumoxane (MAO) is inactive in the polymerization of both ethylene and propylene, while the metallocenes with substituted indenyl ligands polymerize propylene to atactic polypropylene of a molecular mass that depends on the size of the alkyl or aryl groups at the 1,1′ positions of the ligand. Ethene is polymerized by rac‐dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1‐methyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 2′ )])/MAO to polyethylene waxes (average degree of polymerization ca. 100), which are terminated almost exclusively by ethenyl end groups. Polyethylene with a high molecular mass could be obtained by increasing the size of the 1‐alkyl substituent.  相似文献   

18.
The synthesis of long‐chain branched polyethylene includes the generation of vinyl‐terminated polyethylene macromonomers and the copolymerization of these macromonomers with ethylene. Four new bridged cyclopentadienyl indenyl (fluorenyl) zirconocene complexes 1a–b, 2a–b were prepared and showed high activities for ethylene homopolymerization upon the activation of methylaluminoxane. The steric bulk of bridged substituent has a profound effect on the catalytic activity as well as on the molecular weight of resulting polyethylene. Complex 1b showed the highest activity of up to 5.32 × 106 g PE/(mol Zr h) for ethylene homopolymerization at 70 °C, which was higher than that of Cp2ZrCl2. The polyethylenes produced with complexes 1a–d/MAO are mostly vinyl‐terminated, possess low molecular weight and fit as macromonomers. The (p‐MePh)2C‐bridged cyclopentadienyl indenyl zirconocene complex 1a could produce polyethylene macromonomer with selectivity for the vinyl‐terminal as high as 94.9%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
New double silylene‐bridged binuclear zirconium complexes [(η5‐RC5H4)ZrCl2]2[μ,μ‐(SiMe2)25‐C5H3)2] [R = H ( 1 ), Me ( 2 ), nPr ( 3 ), iPr ( 4 ), nBu ( 5 ), allyl ( 6 ), 3‐butenyl ( 7 ), benzyl ( 8 ), PhCH2CH2 ( 9 ), MeOCH2CH2 ( 10 )] were synthesized by the reaction of (η5‐RC5H4)ZrCl3·DME with [μ,μ‐(SiMe2)25‐C5H3)2]2? ( L2? ) in THF, and they were all well characterized by 1H NMR, MS, IR, and EA. The binuclear structure of Complex 3 was further confirmed by X‐ray diffraction, where the two zirconium centers are located trans relative to the bridging [μ,μ‐(SiMe2)25‐C5H3)2] moiety. When activated with methylaluminoxane (MAO), this series of zirconium complexes are highly active catalysts for the polymerization of ethylene even under very low molar ratio of Al/Zr (Complex 7 , 5.41 × 105 g‐PE/mol‐Zr·h, Al/Zr = 50) and linear polyethylenes (PEs) with broad molecular weight distribution (MWD, Mw/Mn = 7.31–27.6) was obtained. The copolymerization experiments indicate that these complexes are also very efficient in the incorporation of 1‐hexene into the growing PE chain in the presence of MAO (Complex 6 , 3.59 × 106 g‐PE/mol‐Zr·h; 1‐hexene content, 3.65%). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4901–4913, 2007  相似文献   

20.
A critical look at the possibility of controlling the molecular weight distribution (MWD) of polyolefins by combining metallocene/methylalumoxane (MAO) catalysts is offered. Catalysts investigated were bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2), its titanium and hafnium analogues (Cp2TiCl2 and Cp2HfCl2), as well as rac-ethylenebis(indenyl)zirconium dichloride (Et(Ind)2ZrCl2). As observed by other researchers, the MWD of polyethylene can be manipulated by combining soluble catalysts, which on their own produce polymer with narrow MWD but with different average molecular weights. Combined in slurry polymerization reactors, the catalysts in consideration produce ethylene homopolymer just as they would independently. Unimodal or bimodal MWDs can be obtained. This effect can be mimicked by blending polymers produced by the individual catalysts. We demonstrate how a variability in catalyst activity translates into a variability in MWD when mixing soluble catalysts in polymerization. Such a variability in MWD must be considered when setting goals for MWD control. We introduce a more quantitative approach to controlling the MWD using this method. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 831–840, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号