首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
An image analysis technique has been developed in order to determine the drop size distributions of sprays produced by low‐velocity plain cylindrical jets. The particle sizing method is based on incoherent backlight images. Each drop is analyzed individually in the image. The two‐dimensional image resulting from the projection of the three‐dimensional object shape (the drop) on a screen (the video sensor surface) is modeled. The model, based on the point spread function formulation, has been developed to derive a relation between contrast and relative width of individual drops. This relation is used to extend the domain of validity of drop size in terms of size range, out of focus and image resolution. The shape parameter is determined for each drop image through morphological analysis. Spherical and non‐spherical droplets are then sorted on the basis of this parameter. Non‐spherical drops are regarded as non‐fully atomized liquid bulks or coalesced drops. Finally, the droplet size distribution of true spherical droplets is established for a low‐velocity plain cylindrical liquid jet.  相似文献   

4.
Particle breakage can be characterised as attrition, chipping, fracture, abrasion and wear. All these types of breakage mechanisms are the effect of the damage caused to these particles. These mechanisms can be differentiated not just on the basis of magnitude and direction of the force but also by the damage caused to the particles. The damage is measured by change in the size distribution and the change in shape of the particles. In the current research, experiments were performed on the newly developed Repeated Impact Test. The unique feature of this test is that about hundred particles can be subjected simultaneously to a monitored number of impacts, without particle‐particle interactions at regulated velocities. The preliminary experiments were performed with single crystalline particles of different shapes and sizes. After fixed number of impacts, the images of the particles were taken. The volume and shape of the particles were determined by image analysis. It was observed that the rate of attrition was very high when the particles are irregular. The rate decreased as the particles became more spherical.  相似文献   

5.
6.
We inject a large number of newly created nano‐particle aggregates into a chamber for the purpose of removing harmful contents in an indoor environment. This study is to experimentally and numerically investigate transient response of particle distributions to particle injections. A room‐sized chamber of 4 m × 2.1 m × 2.4 m is connected to a specially designed particle‐injection system, with two Optical Particle Counters used to simultaneously measure particle‐number densities with the size range from 0.3 μm to 10 μm at the inlet and in the chamber. A velocity probe measures the flow that is up to 1 m/s. An Euler‐type particulate‐phase‐transport model is developed and validated by comparing with experimental data. The study shows that the transient behavior of particle distributions is determined by many factors, including particle size, particle settling speed, sampling location, and velocity distribution. Particle number densities decrease in time more quickly for large particles than for small particles, and locations farther downstream in the chamber correlate more weakly with the inlet injection.  相似文献   

7.
A fully kinetic self‐consistent model of an absorbing particle immersed in stationary isotropic weakly collisional plasma has been developed. The combined effects of particle size and ion‐neutral charge exchange collisions have been investigated for intermediate regimes, where no analytic theories are available. It is shown that collisional effects related to the ion orbital destruction (presence of extrema in ion flux collected on the particle surface and in particle potential and charge) are important for small particles, while they are totally absent for large particles. The potential distribution around the particle is quite well represented by a Yukawa form, but with an effective screening length that shows different dependences from the gas pressure for small and large particle size. Analytical fitting formulas of particle charge and potential and screening length depending on the particle radius parameter and on the Knudsen number have been obtained (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A standard method to determine particle shape and size is by image analysis. This paper addresses microscopic image analysis (semi‐automated) investigations of two different organic crystalline chemicals generated by batch cooling crystallisation. The results generated from microscopic image analysis were compared with data obtained by dynamic image analysis (automated) because very few contributions are available in the open literature. The chemical systems were polymorphic L‐glutamic acid which crystallises into α (prismatic) or β (needle) form and the non‐polymorphic mono sodium glutamate which crystallises into needles. The images from these techniques were processed to generate information on crystal shape and size. It has been observed that shape effects can distort the size obtained in size characterization studies. In this study, comparisons were made of processing time, number of crystals and accuracy between microscopic and dynamic image analysis. For representative microscopic image analysis, 5000 crystals were analysed in an average of eight hours while several hundred thousand crystals were processed using dynamic image analysis within 15 minutes. Using the parameters D10, D50, D90, span and aspect ratio for statistical comparison, it was found that the results obtained for D50 by the two techniques were comparable and in accordance with other measurements (laser diffraction spectroscopy and ultrasonic attenuation spectroscopy) even though these non‐spherical particles had different orientations during measurement by the two methods. However, substantial differences in span of the distribution and aspect ratio were returned by the two techniques.  相似文献   

9.
This paper describes a new test machine that has been designed to measure the strength of single particles in the size range of 102–103 μm. The device is a vibrating box that subjects each particle in the sample to a large number of impacts of known but variable strength. By tracking the size and shape of the particles as a function of the number of impacts, their strength characteristics against the mechanisms of fracture, fatigue and attrition can be differentiated. The number of particles tested in one sample is restricted in order to make any particle‐particle interaction negligible but is sufficiently large that the distribution of these characteristics can be determined.  相似文献   

10.
The X‐ray PIV (particle image velocimetry) technique has been used as a non‐invasive measurement modality to investigate the haemodynamic features of blood flow. However, the extraction of two‐dimensional velocity field data from the three‐dimensional volumetric information contained in X‐ray images is technically unclear. In this study, a new two‐dimensional velocity field extraction technique is proposed to overcome technological limitations. To resolve the problem of finding a correction coefficient, the velocity field information obtained by X‐ray PIV and micro‐PIV techniques for disturbed flow in a concentric stenosis with 50% severity was quantitatively compared. Micro‐PIV experiments were conducted for single‐plane and summation images, which provide similar positional information of particles as X‐ray images. The correction coefficient was obtained by establishing the relationship between velocity data obtained from summation images (VS) and centre‐plane images (VC). The velocity differences between VS and VC along the vertical and horizontal directions were quantitatively analysed as a function of the geometric angle of the test model for applying the present two‐dimensional velocity field extraction technique to a conduit of arbitrary geometry. Finally, the two‐dimensional velocity field information at arbitrary positions could be successfully extracted from X‐ray images by using the correction coefficient and several velocity parameters derived from VS.  相似文献   

11.
A multi‐electrode approach is proposed for on‐line characterisation of particle size and shape in dilute particulate suspensions. Based on an electrozone principle, the approach uses four electrodes in a tube rather than two electrodes across an aperture employed in conventional methods. The outer two electrodes are used for current injection, while the inner two electrodes yield voltage measurement. A sensor designed in this way can reduce errors of false counts and oversizing that may occur in conventional methods, thus providing more accurate particle sizing. It is also possible to use the signal slope along with signal peak for particle size and shape characterisation. Both theoretical modelling and experiments were conducted, showing that particle aspect ratio along with particle diameter can be obtained, for example, for cylindrical particles.  相似文献   

12.
Fumed oxides produced in gas‐phase processes, such as silicas and aluminum oxide, consist of a cluster of aggregated primary particles. The aggregate size of these particles is an important variable in many applications. However, current procedures for measuring particle sizes all assume that the particles have a spherical shape and are thus not truly capable of determining aggregate size. The results of such particle size measurements are consequently called “equivalent spherical diameter” (ESD), but these results vary from method to method. This publication shows that it is feasible to use the number of primary particles per aggregate, rather than the ESD, as a measure for the particle size of clusters of this type. The method is based on dynamic light scattering (photon correlation spectroscopy, PCS), which has proven itself in the analysis of fumed oxides. A numerical simulation based on random, computer‐generated model aggregates is used to modify the well‐known Stokes‐Einstein equation so that the number of primary particles can be determined.  相似文献   

13.
14.
基于人体医学CT扫描,重建得到"鼻腔-咽喉主气管-六级支气管"三维几何模型;采用大涡模拟和离散相模型的描述颗粒运动,并在拉格朗日框架下跟踪颗粒。考察了四种气载放射性微粒在典型呼吸强度下的运动和沉积。结果表明:在各工况下,气载放射性颗粒在呼吸道内运动受流道变化、缩放效应、呼吸强度和阻流面等影响较大,均呈现出明显的积聚性和沉积的高度不均匀性,易形成局部沉积热点。在4个弯曲面、2个缩放管结构区域以及支管分叉面出现大量颗粒沉积。气载放射性颗粒的沉积热点区域将导致人体组织细胞的应激反应,造成组织和器官的辐射损伤。颗粒的沉积率随粒径和呼吸强度的增加而增加,但粒径小于0.5μm后,沉积率呈相反趋势。大颗粒在呼吸道内受流道变化、呼吸强度和阻流效应等影响较大,小颗粒受布朗运动和斯坦夫升力影响更显著。  相似文献   

15.
A method of deconvoluting 2‐dimensional particle size distributions from chord size data is presented and evaluated. This is the Probability Apportioning Method (PAM3). It assumes that the particles (or droplets) can be represented by super quadrics and are cut randomly by a sensor to give a chord measurement. Starting from an assumed uniform particle distribution, Bayes' theorem is used to calculate hit probabilities for each particle type and the population is then recalculated. The process is then repeated until there is no significant further change in the calculated distribution. Using numerical simulations PAM3 is shown to be quite accurate and robust for a number of different types of particle shapes provided there is a sufficient number of accurate measurements.  相似文献   

16.
A new method for the simultaneous determination of the distribution of particle mass density and the distribution of particle size with a technique with only a single measurement is presented. The basic idea of the new optical method is the analysis of gravitational particle settling by a digital image acquisition system. Individual particles illuminated by a laser light sheet are tracked by a continuously operating CCD camera. The projected area, shape factors and the centre of gravity are detected during the sedimentation process from a series of images with a constant time spread. As the algorithm is based on single particle tracking, the heterogeneity of the sample can be taken into account. From these measured particle characteristics, particle size and settling rate are calculated. Thus particle mass density is obtained taking into account also the influence of particle shape on the settling process. This method, which we name sedimentation image analysis (SIA), is particularly suitable for the characterization of heterogeneous material, e.g. soil, in the micrometer range.  相似文献   

17.
Accurate particle size characterization of aggregated and agglomerated particles is only possible by analysis of photographs. Both the primary particle size and the morphology of the aggregate are important experimental results. Since standard image analysis techniques for particle size analysis usually recognize only single particles, a new programme, called here Sparse Hough Transformation, was developed for the automated recognition of spherical particles within an aggregate. The method is shown to perform well, even for images with many overlapping particles. The structure of the aggregate is analysed using the fractal dimension, determined from the density-density correlation function. Finite size effects, important when dealing with aggregates containing few primary particles, are taken into account by including a cut-off function.  相似文献   

18.
The numerically exact superposition T-matrix method is used to compute the scattering cross sections and the Stokes scattering matrix for polydisperse spherical particles covered with a large number of much smaller grains. We show that the optical effect of the presence of microscopic dust on the surfaces of wavelength-sized, weakly absorbing particles is much less significant than that of a major overall asphericity of the particle shape.  相似文献   

19.
Particle science and technology evolve toward ever increasing complexity with respect to the multidimensional particle properties of size, shape, surface, internal structure, and composition. In this study, the theoretical background is elaborated for multidimensional particle size distributions (PSDs) by transferring the concepts known from 1D size distributions to anisotropic particles comprising at least two different length dimensions, e.g., nanorods and platelets. After introducing 2D PSDs, the calculation of differently weighted probability density functions including their interconversion is presented. This is necessary in order to compare data resulting from different measurement techniques which probe different physical properties and thus provide differently weighted PSDs. In addition, it is shown how 1D distributions with reduced content of information can be deduced from 2D PSDs. As a proof‐of‐concept and for illustration purposes, this approach is applied to a 2D Gaussian size distribution. Furthermore, a generalized scheme is suggested which outlines the conversion of number, surface, and volume weighted densities within the 2D space. The application of these methods to the more general n‐dimensional case is straightforward.  相似文献   

20.
黄敏松  雷恒池 《物理学报》2018,67(24):249202-249202
作为云微物理过程测量的重要利器,机载云降水粒子成像仪在云降水物理与人工影响天气研究中具有重要的作用.从采样结果来看,机载云降水粒子成像仪所测粒子图像中含有大量的粒子图像仅是粒子的一部分而已,即部分状粒子.因其数量较多,对该类粒子所选处理方法不同,会引起测量结果的很大差异.本文介绍并分析了现有部分状粒子处理方法的优劣,通过对部分状粒子的再定义与粒子形状分类,提出了一个融合粒子形状识别技术、"粒径重构"和"中心在内"方法的新的部分状粒子处理方法;利用实测数据,对所提方法与现有方法进行了云微物理参量处理结果的对比,发现本文所提方法与"粒径重构"方法处理结果比较一致,能较好地克服"整体在内"与"中心在内"两种方法存在的缺陷;同时,在针柱状粒子占比较多情形下,本文所提方法要比"粒径重构"方法处理后的结果相对合理.因此本文所提方法对仪器所测粒子数据处理具有更好的适应性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号