首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red shiny crystals of [Rb(dibenzopyridino‐18‐crown‐6)2]2(I3)(I5) were obtained from a dichloromethane/ethanol solution of RbI, I2 and dibenzopyridino‐18‐crown‐6. Triclinic, , a = 1494.3(1), b = 1534.1(1), c = 2412.9(2) pm, α = 76.95(1), β = 83.58(1), γ = 68.67(1)°, V = 5016.7(7) 106·pm3, Z = 2. The crystal structure consists of [Rb(dbp18c6)2]+ cations leaving suitable three‐dimensional channels for the linear I3 and V‐shaped I5 anions which are isolated from each other.  相似文献   

2.
Molecular and Crystal Structure of Rubidium(dibenzo‐18‐crown‐6)pentaiodide [Rb(C20H24O6)]I5 [Rb(Dibenzo‐18‐crown‐6)]2(I5)2 is obtained as dark brown columns by reacting dibenzo‐18‐crown‐6, rubidium iodide, and iodine in a molar ratio of 1 : 1 : 6 in ethanole / dichlormethane (1:1). [Rb(C20H24O6)]2(I5)2 crystallizes with four formula units per unit cell in the orthorhombic space group Pnma with a = 1725.15(2) pm, b = 1863.76(3) pm and c = 1885.19(3) pm. The crystal structure consists of pentaiodide units I5, which are linked to one another by head‐to‐tail‐contacts. The I2 units, which stick out of the chain, are twisted against each other, in a way that neither a cis or a trans configuration is formed. By secondary bonding, the iodine atoms form nets of 18‐member planar rings with an almost rectangular form. This net‐like structural element has not been described up to now.  相似文献   

3.
New Polyiodides of Cesium containing Double and Triple Decker Cations, [Cs(benzo‐18‐crown‐6)2]Ix and [Cs2(benzo‐18‐crown‐6)3](Ix)2 (x = 3, 5) [Cs(b18c6)2]Ix (x = 3 (1) , 5 (3) ) and [Cs2(b18c6)3](Ix)2 (x = 3 (2) , 5 (4) ) (b18c6 = benzo‐18‐crown‐6) have been synthesized by the reaction of benzo‐18‐crown‐6 (C16H24O6), cesium iodide (CsI) and iodine (I2) in acetonitrile ( 1 ), ethanol/dichloromethane ( 2 , 4 ) and 2‐methoxyethanol ( 3 ). Their crystal structures were determined on the basis of single crystal X‐ray data {( 1 ): monoclinic, C2/c, Z = 4, a = 2048.8(5), b = 1329.5(5), c = 1588.7(5) pm, β = 110.23(1)°; ( 2 ): monoclinic, C2/c, Z = 4, a = 2296.0(1), b = 2092.7(1), c = 1373.6(1) pm, β = 100.21(1)°; ( 3 ): monoclinic, P21/n, Z = 4, a = 1586.3(1), b = 1745.5(1), c = 1608.6(1) pm, β = 92.37(1)°; ( 4 ): triclinic, , Z = 2, a = 1241.7(1), b = 1539.8(2), c = 1938.4(2) pm, α = 91.15(1), β = 100.53(1), γ = 95.26(1)°}. As expected, double decker cations centered by Cs atoms, [Cs(b18c6)2]+, are found in the structures of ( 1 ) and ( 3 ). In contrast, the triple decker cation found in ( 2 ) and ( 4 ) is less common. The triiodide anions of ( 1 ) and ( 2 ) can be regarded as normal and the chain‐type pentaiodide anions of ( 3 ) and ( 4 ) fall into the known systematic sequence of these anions. The differences in the connectivity of the crystallographically independent I5? anions in ( 4 ) are surprising with respect to the fact that, so far, independent pentaiodide anions do not show variations in their scheme of connectivity within one crystal structure.  相似文献   

4.
5.
6.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

7.
On the Crown Ether Complexes [K(15-Crown-5)2]3[Sb3I12], [TeCl3(15-Crown-5)][TeCl5], and [TeCl3(15-Crown-5)]2[TeCl6] Orange-coloured crystals of [K(15-crown-5)2]3[Sb3I12] are formed in the reaction of potassium iodide with antimony triiodide and 15-crown-5 in acetonitrile solution. An X-ray structure determination reveals severe disorder of the crown ether molecules, which coordinate to the potassium atoms in a sandwich array; so only the [Sb3I12]3? ion and the potassium positions were ascertained. The anion is a centrosymmetric trimer (symmetry C2h), which can be understood as central SbI63? ion, coordinated by two SbI3 molecules. (Space group C2/m), Z = 2, 3263 observed, independent reflections, R = 0.06, lattice dimensions at 20°C: a = 2541.1 pm, b = 1441.7 pm, c = 1588.4 pm, β = 113.33°. The tellurium complexes [TeCl3(15-crown-5)] [TeCl5] and [TeCl3(15-crown-5)]2[TeCl6] are prepared by reaction of TeCl4 with 15-crown-5 in acetonitrile solution, forming yellow-green crystals sensitive to moisture. They are characterized by their i.r. spectra.  相似文献   

8.
Crystal Structure of the “Supramolecular” Complex [Cs2(18-crown-6)][HgI4] with Unusually Coordinated Cs Ions The reaction of 18-crown-6, 1,4,7,10,13,16-hexaoxacyclooctadecane, with HgI2/CsI in methanol yields crystals of [Cs2(C12H24O6)][HgI4]. The compound crystallizes monoclinically, space group P21/c, Z = 4, a = 1574.8(3), b = 1067.0(3), c = 1693.2(6) pm, and β = 98.29(3)º. The structure consists of a network made up of two different types of [Cs-(18-crown-6)-Cs]2+ cations, interconnected by [HgI4]2? anions. The cations form an “anti-sandwich” structure with relatively short Cs ? Cs distances of 382 pm in the first type of cations and a longer distance of 480 pm in the second type of cations.  相似文献   

9.
Pentazole Derivates and Azides Formed from them: Potassium‐Crown‐Ether Salts of [O3S—p‐C6H4—N5] and [O3S—p‐C6H4—N3] O3S—p‐C6H4—N2+ was reacted with sodium azide at —50 °C in methanol, yielding a mixture of 4‐pentazolylbenzenesulfonate and 4‐azidobenzenesulfonate (amount‐of‐substance ratio 27:73 according to NMR). By addition of KOH in methanol at —50 °C a mixture of the potassium salts K[O3S—p‐C6H4—N5] and K[O3S—p‐C6H4—N3] was precipitated (ratio 60:40). A solution of this mixture along with 18‐crown‐6 in tetrahydrofurane yielded the crystalline pentazole derivate [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF by addition of petrol ether at —70 °C. From the same solution upon evaporation and redissolution in THF/petrol ether the crystalline azide [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF was obtained. A solution of the latter in chloroform/toluene under air yielded [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O. According to their X‐ray crystal structure determinations [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF and [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF have the same kind of crystal packing. Differences worth mentioning exist only for the atomic positions of the pentazole ring as compared to the azido group and for one THF molecule which is coordinated to the potassium ion; different orientations of the THF molecule take account for the different space requirements of the N5 and the N3 group. In [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O there exists one unit consisting of one [K‐18‐crown‐6]+ and one [O3S‐C6H4—N3] ion and another unit consisting of two [O3S‐C6H4—N3] ions joined via two [K‐18‐crown‐6]+ ions and one water molecule. The rate constants for the decomposition [O3S‐C6H4—N5] → [O3S‐C6H4—N3] + N2 in methanol were determined at 0 °C and —20 °C.  相似文献   

10.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

11.
Reaction of O,O′‐diisopropyl‐3‐methyl‐1,2‐butadienylphosphonate with 1,10‐diaza‐18‐crown‐6 in the presence of a catalytic amount of iPrONa leads to the new crown‐ether derivative, containing phosphonate pendant arms ( L ). The structure of the compound obtained was investigated by single crystal X‐ray diffraction analysis, IR, 1H and 31P{1H} NMR spectroscopy, and microanalysis. In the crystal structure the side arms of L are in an anti disposition relative to the macrocyclic cavity. It was established that phosphorylation of 1,10‐diaza‐18‐crown‐6 by allenylphosphonate results in an increase of extraction of NaPic and KPic, whereas LiPic and NH4Pic are extracted practically in the same level.  相似文献   

12.
Pb(18‐crown‐6)Cl2 and Hg(18‐crown‐6)I2 are obtained as transparent colourless crystals of needle and hexagonal shape, respectively, by isothermal evaporation of their dichloromethane solutions. Pb(18‐crown‐6)Cl2 crystallizes with the trigonal crystal system [ , no. 148, a = b = 1176.3(2), c = 1191.8(3) pm, V = 1428.2(5) 106·pm3, Z = 3] whereas Hg(18‐crown‐6)I2 crystallizes with the orthorhombic crystal system (Pnma, no. 62, a = 1613.9(2) pm, b = 2822.2(5) pm, c = 841.3(1) pm, V = 3832(1)106·pm3, Z = 8). Both compounds are characterized by linear MX2 (HgI2 or PbCl2) molecular units which are encrypted by the crown ether. In both cases, the divalent metal ion resides in the middle of the crown ether resulting in a hexagonal bipyramidal coordination environment for the metal cations. The molecular symmetry comes close to D3d. Hg(18‐crown‐6)I2 and Pb(18‐crown‐6)Cl2 differ in the way the single MX2@18‐crown‐6 units are packed. Whereas the Hg(18‐crown‐6)I2 molecules are arranged in a (distorted) cubic closest packing, the Pb(18‐crown‐6)Cl2 molecules adopt a hexagonal closest packing.  相似文献   

13.
Pentaiodides of Complex Alkaline Metal Crown Ether Cations: Synthesis and Structural Characterisation of the Compounds [M(benzo‐15‐crown‐5)2]I5, M = Na, K, Rb and Cs The isotypic compounds [M(benzo‐15‐crown‐5)2]I5, M = Na, K, Rb and Cs are obtained as single crystals via the reaction of benzo‐15‐crown‐5, MI and iodine (2 : 1 : 2) from ethanol/dichloromethane (1 : 1). These compounds crystallize in the monoclinic space group P21/n with four formula units in the unit cell. The cations form typical sandwich complexes. The volume of the unit cell increases by 4, 3 % from the sodium to the caesium compound, corresponding to the increasing space required by the cations. The pentaiodide units consist of a elongated triiodide unit and two iodine half‐molecules. These iodine molecules are completed by centres of symmetry. The interconnection between the pentaiodide units leads to the formation of zig‐zag chains that run along [001]. Considering the strongly different ionic radii of the alkali‐metal cations, the existence of this number of isotypic structures is rather surprising.  相似文献   

14.
The novel thiodiphosphate, [Na(12‐crown‐4)2]2[P2S6] · CH3CN, bis[di(12‐crown‐4)sodium] hexathiodiphosphate(V) acetonitrile solvate ( 1 ) has been synthesized by the reaction of Na2[P2S6] with 12‐crown‐4 in dry acetonitrile. The title compound crystallizes in the tetragonal space group P42/mbc (no. 135), with a = 15.184(1) Å, c = 21.406(2) Å and Z = 4 and final R1 = 0.0671 and wR2 = 0.0809. The crystal structure is characterized by discrete sodium‐bound crown‐ether sandwich cations, [Na(12‐crown‐4)2]+ and [P2S6]2? ions with D2h symmetry. Sodium ion is coordinated by the eight oxygen atoms of two crown‐ether molecules to form a square antiprisma. Solvent molecules of CH3CN are statistically disordered. Distances and angles of the [P2S6]2? unit are similar to those in [K(18‐crown‐6)]2 [P2S6] · 2 CH3CN, and in K2[P2S6] and Cs2[P2S6]. The FT‐Raman and FT‐IR spectrum of the title compound has been recorded and interpreted, especially with respect to the P2S6 group and in comparison to the few known metal hexathiodiphosphates(V).  相似文献   

15.
The compound [Rb(18‐crown‐6)]2Rb2[Sn9](en)1.5 ( 1 ) was synthesized from an alloy of formal composition K2Rb2Sn9 by dissolving in ethylenediamine (en) followed by the addition of 18‐crown‐6 and toluene. 1 crystallizes in the monoclinic space group P21/n with a = 10.557(2), b = 25.837(5), c = 20.855(4)Å, β = 102.39°, and Z = 4. The structure consists of [Sn9]4— cluster anions, which are connected via Rb atoms to infinite [Rb4Sn9] layers. The layers of binary composition are separated by the crown ether molecules. The crown ether molecules are bound by one side via the Rb atoms to the [Sn9]4— anions. The other side, which is turned away from the Rb atoms, shows only weak van der Waals interactions to the crown ether molecules of the next layer. Comparison with other compounds of similar composition shows, that the variation of the alkali metals and the complexing organic molecules leads to the low dimensional arrangement of the clusters.  相似文献   

16.
Alkali‐isocyanoacetates. Synthesis and Structure of [K(18‐crown‐6)](O2CCH2NC) The alkali isocyanoacetates M+[O2CCH2NC]? (M = Li,Na,K,Cs) ( 1a ‐ d ) are synthesized by reaction of ethyl isocyanoacetate with the respective alkali hydroxides in ethanol and characterized by IR, NMR (1H, 13C), and mass spectrometry (FAB). In alcoholic solution as well as in the gas phase ion pairs and higher aggregated species are observed. In contrast, [K(18‐crown‐6)][O2CCH2NC] ( 2 ) which is obtained from 1c and 18‐crown‐6, turns out to be a 1:1 electrolyte in solution (acetone); in the solid, the isocyanoacetate anion binds to K+ via the two carboxylate oxygen atoms resulting in an O8‐coordinated metal atom.  相似文献   

17.
A Sodium Oxocobaltate(II) Sulfate: Na8[CoO3][SO4]2 Na8[CoO3][SO4]2 has been obtained from a redox reaction between cobalt metal and CdO in the presence of Na2SO4 and Na2O at 550 °C (15 d) as red single crystals. The structure has been determined from single crystal data (IPDS‐data, T = 170 K, Cmcm, Z = 4, a = 806.88(9) pm, b = 2232.1(3) pm, c = 705.97(9) pm, Rall = 0.047). Magnetic properties and spectroscopic investigations are reported and discussed within the Angular‐Overlap‐Model.  相似文献   

18.
Three Novel Selenoborato- closo -dodecaborates: Syntheses and Crystal Structures of Rb8[B12(BSe3)6], Rb4Hg2[B12(BSe3)6], and Cs4Hg2[B12(BSe3)6] The three selenoborates Rb8[B12(BSe3)6] (P1, a = 10.512(5) Å, b = 10.450(3) Å, c = 10.946(4) Å, α = 104.53(3)°, β = 91.16(3)°, γ = 109.11(3)°, Z = 1), Cs4Hg2[B12(BSe3)6] (P1, a = 9.860(2) Å, b = 10.740(2) Å, c = 11.078(2) Å, α = 99.94(3)°, β = 90.81(3)°, γ = 115.97(3)°, Z = 1), and Rb4Hg2[B12(BSe3)6] (P1, a = 9.593(2) Å, b = 10.458(2) Å, c = 11.131(2) Å, α = 99.25(3)°, β = 91.16(3)°, γ = 116.30(3)°, Z = 1) were prepared from the metal selenides, amorphous boron and selenium by solid state reactions at 700 °C. These new chalcogenoborates contain B12 icosahedra completely saturated with six trigonal-planar BSe3 entities functioning as bidentate ligands to form a persubstituted closo-dodecaborate anion. The two isotypic compounds Rb4Hg2[B12(BSe3)6] and Cs4Hg2[B12(BSe3)6] are the first selenoborate structures containing a transition metal which are characterized by single crystal diffraction.  相似文献   

19.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

20.
Crystal Structure of Potassium Triflate‐butyrolactone, [K3(O3SCF3)3(O2C4H6)2] Single Crystals of [K3(O3SCF3)3(O2C4H6)2] ( 1 ) have been obtained as a by‐product from the reaction of KNPPh3 with Yb(O3SCF3)3 in THF with subsequent addition of butyrolactone. The structure of 1 consists of three symmetry‐independent potassium ions which are linked by the oxygen atoms of the triflate ions and the butyrolactone molecules to give a supramolecular structure with layers normal to the crystallographic b‐axis. The carbonyl oxygen atoms of both butyrolactone molecules show a μ3‐bridging function between three K+ ions, one of them is, in addition, coordinated by the ring O‐atom in a chelate manner. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1155.0(1), b = 1537.2(1), c = 1531.1(1) pm, β = 100.623(7)°, R = 0.0484.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号