首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Partially disulfonated hydroquinone (HQ)‐based poly(arylene ether sulfone) random copolymers were synthesized and characterized for application as proton exchange membranes. The copolymer composition was varied in the degree of disulfonation. The copolymers were characterized by 1H NMR, Differential Scanning Calorimetry (DSC), and other analytical techniques. The copolymer with a 25% degree of disulfonation showed the best balance between water uptake and proton conductivity. The copolymers showed substantially reduced methanol permeability compared with Nafion® and satisfactory direct methanol fuel cell performance. The methanol selectivity improved significantly in comparison to Nafion® 117. At a given ionic composition, the HQ‐based system showed higher water uptake and proton conductivity than the biphenol‐based (BPSH‐xx) poly(arylene ether sulfone)s copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 384–391, 2009  相似文献   

2.
Hydrophobic‐hydrophilic sequence multiblock copolymers, based on alternating segments of phenoxide terminated fully disulfonated poly(arylene ether sulfone) (BPS100) and fluorine‐terminated poly(arylene ether sulfone) (6FBPS0) were synthesized and evaluated for application as proton exchange membranes. By utilizing mild reaction conditions the ether–ether interchange reactions were minimized, preventing the randomization of the multiblock copolymers. Tough, ductile, transparent membranes were solution cast from the block copolymers and were characterized with regard to intrinsic viscosity, morphology, water uptake, and proton conductivity. The conductivity values of the 6FBPS0‐BPSH100 membranes were compared to Nafion 212 and a partially fluorinated sulfonated poly(arylene ether sulfone) random copolymer (6F40BP60). The nanophase separated morphology was confirmed by transmission electron microscopy and small angle X‐ray scattering, and enhanced proton conductivity at reduced relative humidity was observed with longer block lengths. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Directly copolymerized wholly aromatic sulfonated poly(arylene ether sulfone) copolymers derived from 4,4′‐biphenol, 4,4′‐dichlorodiphenyl sulfone, 3,3′‐disulfonated, and 4,4′‐dichlorodiphenyl sulfone (BPSH) were evaluated as proton‐exchange membranes for elevated temperature operation (100–140 °C). Acidification of the copolymer from the sulfonated form after the nucleophilic step (condensation) copolymerization involved either immersing the solvent‐cast membrane in sulfuric acid at 30 °C for 24 h and washing with water at 30 °C for 24 h (method 1) or immersion in sulfuric acid at 100 °C for 2 h followed by similar water treatment at 100 °C for 2 h (method 2). The fully hydrated BPSH membranes treated by method 2 exhibited higher proton conductivity, greater water absorption, and less temperature dependence on proton conductivity as compared with the membranes acidified at 30 °C. In contrast, the conductivity and water absorption of a control perfluorosulfonic acid copolymer (Nafion 1135) were invariant with treatment temperature; however, the conductivity of the Nafion membranes at elevated temperature was strongly dependent on heating rate or temperature. Tapping‐mode atomic force microscope results demonstrated that all of the membranes exposed to high‐temperature conditions underwent an irreversible change of the ionic domain microstructure, the extent of which depended on the concentration of sulfonic acid sites in the BPSH system. The effect of aging membranes based on BPSH and Nafion at elevated temperature on proton conductivity is also discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2816–2828, 2003  相似文献   

4.
Novel biphenol‐based wholly aromatic poly (arylene ether sulfones) containing pendant sulfonate groups were prepared by direct aromatic nucleophilic substitution polycondensation of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenyl sulfone (SDCDPS), 4,4′‐dichlorodiphenylsulfone (DCDPS) and biphenol. Copolymerization proceeded quantitatively to high molecular weight in N‐methyl‐2‐pyrrolidinone at 190°C in the presence of anhydrous potassium carbonate. Tough membranes were successfully cast from the control and the copolymers, which had a SDCDPS/DCDPS mole ratio of either 40:60 or 60:40 using N,N‐dimethylactamide; the 100% SDCDPS homopolymer was water soluble. Short‐term aging (30 min) indicates that the desired acid form membranes are stable to 220°C in air and conductivity values at 25°C of 0.110 (40%) and 0.170 S/cm (60%) were measured, which are comparable to or higher than the state‐of‐the art fluorinated copolymer Nafion 1135 control. The new copolymers, which contain ion conductivity sites on deactivated rings, are candidates as new polymeric electrolyte materials for proton exchange membrane (PEM) fuel cells. Further research comparing their membrane behavior to post‐sulfonated systems is in progress.  相似文献   

5.
Sulfonated poly(ether sulfone)s containing binaphthyl units (BNSHs) were successfully prepared for fuel cell application. BNSHs, which have very simple structures, were easily synthesized by postsulfonation of poly(1,1′‐dinaphthyl ether phenyl sulfone)s and gave tough, flexible, and transparent membranes by solvent casting. The BNSH membranes showed low water uptake compared to a typical sulfonated poly(ether ether sulfone) (BPSH‐40) membrane with a similar ion exchange capacity (IEC) value and water insolubility, even with a high IEC values of 3.19 mequiv/g because of their rigid and bulky structures. The BNSH‐100 membrane (IEC = 3.19 mequiv/g) exhibited excellent proton conductivity, which was comparable to or even higher than that of Nafion 117, over a range of 30–95% relative humidity (RH). The excellent proton conductivity, especially under low RH conditions, suggests that the BNSH‐100 membrane has excellent proton paths because of its high IEC value, and water insolubility due to the high hydrophobicity of the binaphthyl structure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5827–5834, 2009  相似文献   

6.
Sulfonated poly(phthalazinone ether ketone) (SPPEK) copolymers and sulfonated poly(phthalazinone ether sulfone) (SPPES) copolymers containing pendant sodium sulfonate groups were prepared by direct copolymerization. The reaction of disodium 3,3′‐disulfonate‐4,4′‐difluorobenzophenone (SDFB‐Na), 4,4′‐difluorobenzophenone (DFB), and 4‐(4‐hydroxyphenyl)‐1(2H)‐phthalazinone (DHPZ) at 170 °C in N‐methyl‐2‐pyrrolidione containing anhydrous potassium carbonate gave SPPEKs. SPPESs were similarly obtained with 3,3′‐disulfonate‐4,4′‐difluorophenyl sulfone, 4‐fluorophenyl sulfone (DFS), and DHPZ as monomers. The sulfonic acid groups, being on deactivated positions of the polymer backbone, were expected to be hydrolytically more stable than postsulfonated polymers. Fourier transform infrared and 1H NMR were used to characterize the structures and degrees of sulfonation of the sulfonated polymers. Membrane films of SPPEKs with SDFB‐Na/DFB molar feed ratios of up to 60/40 and SPPESs with sulfonated 4‐fluorophenyl sulfone/DFS molar feed ratios of up to 50/50 were cast from N,N‐dimethylacetamide polymer solutions. Membrane films in acid form were then obtained by the treatment of the sodium‐form membrane films in 2 N sulfuric acid at room temperature. An increase in the number of sulfonate groups in the copolymers resulted in an increased glass‐transition temperature and enhanced membrane hydrophilicity. The sodium‐form copolymers were thermally more stable than their acid forms. The proton conductivities of the acid‐form copolymers with sulfonated monomer/unsulfonated monomer molar feed ratios of 0.5 and 0.6 were higher than 10?2 S/cm and increased with temperature; they were less temperature‐dependent than those of the postsulfonated products. SPPESH‐50 showed higher conductivity than the corresponding postsulfonated poly(phthalazinone ether sulfone). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2731–2742, 2003  相似文献   

7.
Polymer electrolyte membranes (PEMs) made of sulfonated poly(arylene ether)s consisted of 3,3′‐disulfo‐4,4′‐dichlorodiphenylsulfone disodium salt, 2,6‐dichlorobenzonitrile, and one of three dihydroxynaphthalene isomers (2,6‐, 2,7‐, and 1,5‐dihydroxynaphthalene, abbreviated as 2,6‐N, 2,7‐N, and 1,5‐N, respectively) were prepared with similar level of inherent viscosity and ion exchange capacity, and structural effect of the catenation in dihydroxynaphthalene isomers on membrane properties was compared. In the case of membranes for PEM fuel cell application with relatively high ion exchange capacity around 2.1 mequiv/g, three copolymers showed almost the same proton conductivity; however, swelling in water increased with the following order: 1,5‐N < 2,6‐N < 2,7N. In the case of direct methanol fuel cell membranes with lower ion exchange capacity around 1.5 mequiv/g, no remarkable difference in proton conductivity was also observed in three isomeric copolymers and swelling property and methanol permeability were lower in 1,5‐N and 2,6‐N copolymers than 2,7‐N copolymer. These tendencies show that higher rigidity or energy barrier for conformational change of polymer chain gives better performance of PEM for fuel cells with superior dimensional stability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Poly(arylene ether sulfone) copolymers derived from 9,9-bis(4-hydroxyphenyl)fluorene, bisphenol S and 4,4′-difluorodiphenylsulfone and poly(arylene ether ketone) copolymers derived from 4-phenoxybiphenyl, diphenyl ether and isophthaloyl chloride were prepared as precursor polymers for sulfonation reaction in which sulfonic groups are introduced quantitatively into specified positions. Sulfonation reaction for these two series of copolymers by concentrated sulfuric acid was successfully carried out to give sulfonated polymers with controlled positions and degree of sulfonation. Thermal stability, moisture absorption and proton conductivity for these two series of copolymers were measured and the results were compared to those of perfluorosulfonic acid polymers.  相似文献   

9.
Poly(arylene ether sulfone) (PSF), showing good thermal stability and excellent mechanical properties, was synthesized as an anion‐exchange matrix. It was synthesized by the condensation polymerization between bisphenol A and 4,4′‐dichlorodiphenylsulfone. 1°‐Amine‐containing poly(arylene ether sulfone) (1°‐APSF) was synthesized by the reduction reaction of a nitrated PSF. Then, it was transferred to 3°‐amine‐containing poly(arylene ether sulfone) (3°‐APSF) by the alkylation of the amine of 1°‐APSF. The properties of PSF, 1°‐APSF, and 3°‐APSF were investigated by Fourier transform infrared, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The introduction of the 3°‐amine group into PSF increased the glass‐transition temperature but decreased thermooxidative stability. The ion‐exchange capacities of 1°‐APSF and 3°‐APSF were shown to be 2.24 and 2.86 mequiv/g, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4281–4287, 2002  相似文献   

10.
A series of novel side‐chain sulfonated poly(arylene ether sulfone) (SPAES) multiblock and random copolymers were synthesized by condensation polymerization from a new disulfonated aryl sulfone monomer, 4,4′‐difluoro‐2,2′‐bis(3‐sulfobenzoyl)diphenyl sulfone disodium salt (DFBSPS). The chemical structures of DFBSPS and the SPAESs were characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectra. The SPAES membranes prepared by solution cast method exhibited high tensile strength (50–71 MPa) and high radical oxidative stability. They could keep their morphology and maintain proton conductivities after hydrolysis test in 95 °C water for 1000 h. They also showed smaller swelling ratio in in‐plane direction than in through‐plane direction and such an anisotropic effect was more significant for the multiblock copolymers than for the random ones. The multiblock copolymer membranes exhibited higher proton conductivity than the random ones with similar ion exchange capacities (IECs). Preliminary hydrogen‐oxygen fuel cell tests were performed at 60 °C and 80% relative humidity (RH). The results showed that the single cell equipped with the multibiock copolymer membrane SB3 exhibited 0.12 W cm?2 higher maximum output power density than the one equipped with the random copolymer membrane SR3 (with the same IEC), indicating much better performance of the former. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2304–2313  相似文献   

11.
New sulfonated poly(arylene ether sulfone) copolymers with high molecular weights were successfully synthesized with controlled degrees of disulfonation of up to 70 mol % via the direct copolymerization of sulfonated aromatic dihalides, aromatic dihalides, and one of four structurally distinct bisphenols. The disodium salts of the 3,3′‐disulfonated‐4,4′‐dichlorodiphenyl sulfone and 3,3′‐disulfonated‐4,4′‐difluorodiphenyl sulfone comonomers were synthesized via the sulfonation of 4,4′‐dichlorodiphenyl sulfone or 4,4′‐difluorodiphenyl sulfone with 30% fuming sulfuric acid at 110 °C. Four bisphenols (4,4′‐bisphenol A, 4,4′‐bisphenol AF, 4,4′‐biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation. The composition and incorporation of the sulfonated repeat unit into the copolymers were confirmed by 1H NMR and Fourier transform infrared spectroscopy. Solubility tests on the sulfonated copolymers confirmed that no crosslinking and probably no branching occurred during the copolymerizations. Tough, ductile films were solvent‐cast that exhibited increased water absorption with increasing degrees of sulfonation. These copolymers are promising candidates for high temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2264–2276, 2003  相似文献   

12.
Several new co‐poly(arylene ether sulfone)s have been prepared by the reaction of 4,4′‐fluorodiphenyl sulfone (FDS) with different bisphenols namely 4,4′‐isopropylidenediphenol (BPA), 4,4′‐hexafluoroisopropylidenediphenol (6F‐BPA), and N‐phenyl‐3,3‐bis(4‐hydroxyphenyl)phthalimidine(PA). The homo‐poly(arylene ether sulfone)s are named as 1a, 2a, and 3a. The copolymers namely 2b, 2c, 2d and 3b, 3c, 3d have been prepared, respectively, on reaction of FDS with BPA or 6F‐BPA using different molar ratios of PA such as 25, 50, and 75. The poly(aryl ether sulfone)s 1a containing PA unit in the main chain showed a very high glass transition temperature of 280°C and an outstanding thermal stability up to 510°C for 5% weight loss under synthetic air. Depending on the mole% of PA, the glass transition temperatures of the copolymers can be varied. The polymers were soluble in a wide range of organic solvents. Transparent thin films of these polymers exhibited tensile strengths upto 84 MPa and Young's modulus up to 3.16 GPa. The films of these polymers showed low water absorption of 0.24%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Random and block copolymers of poly (ether sulfone) (PES) and poly (ether ether sulfone) (PEES) were synthesized by the nucleophilic polycondensation of 4,4′‐dichlorodiphenyl sulfone (DCDPS) with 4,4′‐dihydroxydiphenyl sulfone (DHDPS) and hydroquinone (HQ). Chemical structures of these copolymers were characterized by 13C NMR. The monomer molar fraction, sequential distribution, and degree of randomness of the copolymers were determined through analyses of the resonances of quaternary carbons in the DCDPS unit. Experimental results show that the molar fractions of the comonomer determined by 13C NMR analyses are close to the charged values in the synthetic step. Moreover, these copolymers, which were prepared by different polymerization methods, revealed different number‐average sequential length and degree of randomness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1624–1630, 2005  相似文献   

14.
A series of selectively sulfonated poly(arylene ether sulfone)‐b‐polybutadiene copolymers (SPAES‐b‐PB) were prepared based on carboxyl terminated polybutadiene (CTPB) and sulfonated poly(arylene ether sulfone) (SPAES) that was directly prepared by polycondensation of 4,4′‐isopropylidenediphenol with different molar ratios of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenyl sulfone (SDCDPS) to 4,4′‐dichlorodiphenylsulfone (DCDPS), and subsequent selective postsulfonation of flexible PB block was carried out. Epoxidized modification of membranes was conducted by an in situ‐generated peracid method. The content of sulfonic acid groups attaching to aromatic rings in SPAES was determined by 1H NMR and was in good aggrement with the controlled ratios. The effect of sulfonated rigid blocks on the postsulfonation of PB blocks was studied by Fourier transform infrared spectroscopy. The glass transition temperature (Tg) and the temperature of the melting peak (T) of membranes in acid form were studied by differential scanning calorimetry. Fenton's reagent test revealed that the selectively sulfonated SPAES‐b‐PB membranes had good stability to oxidation. The microstructure of rod‐like rigid SPAES blocks and interpenetrating network of ions were observed by transmission electron microscopy. Complex impedance measurement showed that an epoxidized membrane with SPAES‐40 exhibited the highest proton conductivity (1.08 × 10?1 S/cm, 90 °C), which was due to the formation of obvious ionic networks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 665–672, 2006  相似文献   

15.
A novel poly(ether sulfone) containing binaphthyl units with pendant perfluoroalkyl sulfonic acids ( BNSH‐PSA ) was developed for a polymer electrolyte membrane (PEM). The BNSH‐PSA was prepared by the aromatic nucleophilic substitution reaction of 1,1′‐binaphthyl‐4,4′‐diol and 4,4′‐dichlorodiphenylsulfone, followed by the bromination with bromine, and then the Ullman coupling reaction with potassium 1,1,2,2,‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy) ethanesulfonate ( PSA‐K ). The ion exchange capacity (IEC) of BNSH‐PSA was estimated to be 1.91 mequiv/g, which corresponded to full conversion to the perfluroalkyl sulfonic acids. The BNSH‐PSA membrane prepared by solution casting showed high oxidative and dimensional stability. High proton conductivity comparable to the Nafion 117 membrane was accomplished in the range of 30–95% relative humidity (RH) due to the high acidity of the perfluoroalkyl sulfonic acids. Furthermore, atomic force microscopic observation supported the formation of the phase‐separated structure that the hydrophilic domains were well dispersed and connected to each other. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
New sulfonated poly(imidoaryl ether sulfone) copolymers derived from sulfonated 4,4′‐dichlorodiphenyl sulfone, 4,4′‐dichlorodiphenyl sulfone, and imidoaryl biphenol were evaluated as polymer electrolyte membranes for direct methanol fuel cells. The sulfonated membranes were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, and proton nuclear magnetic resonance spectra. The state of water in the membranes was measured with differential scanning calorimetry, and the existence of free water and bound water was discussed in terms of the sulfonation level. The 10 wt % weight loss temperatures of these copolymers were above 470 °C, indicating excellent thermooxidative stability to meet the severe criteria of harsh fuel‐cell conditions. The proton conductivities of the membranes ranged from 3.8 × 10?2 to 5 × 10?2 S/cm at 90 °C, depending on the degree of sulfonation. The sulfonated membranes maintained the original proton conductivity even after a boiling water test, and this indicated the excellent hydrolytic stability of the membranes. The methanol permeabilities ranged from 1.65 × 10?8 to 5.14 × 10?8 cm2/s and were lower than those of other conventional sulfonated ionomer membranes, particularly commercial perfluorinated sulfonated ionomer (Nafion). The properties of proton and methanol transport were discussed with respect to the state of water in the membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5620–5631, 2005  相似文献   

17.
A series of sulfonated poly(aryl ether ether ketone ketone)s statistical copolymers with high molecular weights were synthesized via an aromatic nucleophilic substitution polymerization. The sulfonation content (SC), defined as the number of sulfonic acid groups contained in an average repeat unit, could be controlled by the feed ratios of monomers. Flexible and strong membranes in sodium sulfonate form could be prepared by the solution casting method, and readily transformed to their proton forms by treating them in 2 N sulfuric acid. The polymers showed high Tgs, which increased with an increase in SC. Membranes prepared from the present sulfonated poly(ether ether ketone ketone) copolymers containing the hexafluoroisopropylidene moiety (SPEEKK‐6F) and copolymers containing the pendant 3,5‐ditrifluoromethylphenyl moiety (SPEEKK‐6FP) had lower water uptakes and lower swelling ratios in comparison with previously prepared copolymers containing 6F units. All of the polymers possessed proton conductivities higher than 1 × 10?2 S/cm at room temperature, and proton conductivity values of several polymers were comparable to that of Nafion at high relative humidity. Their thermal stability, oxidative stability, and mechanical properties were also evaluated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2299–2310, 2006  相似文献   

18.
One of the integral parts of the fuel cell is the proton exchange membrane. Our research group has been engaged in the past few years in the synthesis of several sulfonated poly(arylene ether) random copolymers. The copolymers were varied in both the bisphenol structure as well as in the functional groups in the backbone such as sulfone and ketones. To compare the effect of sequence length, multiblock copolymers based on poly(arylene ether sulfone)s were synthesized. This paper aims to describe our investigation of the effect of chemical composition, morphology, and ion exchange capacity (IEC) on the transport properties of proton conducting membranes. The key properties examined were proton conductivity, methanol permeability, and water self diffusion coefficient in the membranes. It was observed that under fully hydrated conditions, proton conductivity for both random and block copolymers was a function of IEC and water uptake. However, under partially hydrated conditions, the block copolymers showed improved proton conductivity over the random copolymers. The proton conductivity for the block copolymer series was found to increase with increasing block lengths under partially hydrated conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2226–2239, 2006  相似文献   

19.
Sulfonated fluorinated multiblock copolymers based on high performance polymers were synthesized and evaluated for use as proton exchange membranes (PEMs). The multiblock copolymers consist of fully disulfonated poly(arylene ether sulfone) and partially fluorinated poly(arylene ether ketone) as hydrophilic and hydrophobic segments, respectively. Synthesis of the multiblock copolymers was achieved by a condensation coupling reaction between controlled molecular weight hydrophilic and hydrophobic oligomers. The coupling reaction could be conducted at relatively low temperatures (e.g., 105 °C) by utilizing highly reactive hexafluorobenzene (HFB) as a linkage group. The low coupling reaction temperature could prevent a possible trans‐etherification, which can randomize the hydrophilic‐hydrophobic sequences. Tough ductile membranes were prepared by solution casting and their membrane properties were evaluated. With similar ion exchange capacities (IECs), proton conductivity and water uptake were strongly influenced by the hydrophilic and hydrophobic block sequence lengths. Conductivity and water uptake increased with increasing block length by developing nanophase separated morphologies. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments revealed that the connectivity of the hydrophilic segments was enhanced by increasing the block length. The systematic synthesis and characterization of the copolymers are reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 214–222, 2010  相似文献   

20.
Summary: Poly(arylene ether sulfone)s of high molecular weight and narrow molecular weight distribution were obtained by melt polycondensation of 4,4′-difluorodiphenyl- sulfone and trimethylsilylethers of 4,4′-dihydroxydiphenylsulfone and phenylhydroquinone using CsF as catalyst. Although a block-like structure of the polymers could be expected from the course of reaction, only a single Tg ranging from 190 °C to 230 °C could be detected by DSC and which depended on the copolymer composition. Contrary to the sulfonation of similar poly(ether ether ketone)s the poly(arylene ether sulfone)s here reported were sulfonated both in the side chain and the main chain. Nonetheless the sulfonated poly(arylene ether sulfone)s showed high hydrolytic stability in water at 130 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号