首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica rendered hydrophobic by organosilanes is a widely used model material in colloid chemistry, biological research, catalysis, etc. However, it is often overlooked that the surface properties of silica, and silica made hydrophobic be reacting with silane, change with time when the substrate is immersed in aqueous solution. Therefore the experimental conditions when such model systems are employed have to be carefully assessed. This paper summarizes the findings of the force measurement tests between air bubbles and silica particles hydrophobized with organosilanes such as trimethylchlorosilane and 1,1,1,3,3,3-hexamethyl-disilazane. The results showed that the attractive forces as well as the adhesion between the air bubbles and silica particles decrease with the time of aging in aqueous solution. The silica surfaces rendered hydrophobic with organosilanes become hydrophilic with time due to hydration. The hydrophobicity could be restored by heating the samples at 190?C. The atomic force microscopy imaging on silica plates revealed that in addition to hydration, decomposition of the organosilane layer also takes place.  相似文献   

2.
The present contribution offers a unified explanation to three central phenomena in physical chemistry of interfaces in contact with aqueous solution: (1) Accumulation of large anions at the air/water interface. (2) Accumulation of neutral gas molecules near hydrophobic surfaces and the resulting hydrophobic interaction between two such surfaces, and (3) The Hofmeister effect, namely, the enhanced propensity of small ions to hydrophilic surfaces and large ions to hydrophobic surfaces. The common thread linking these phenomena is the free energy balance between ion or molecule hydration in solution and the cost of localizing these objects at the water-surface interface. Comparing the results of an abstract lattice-gas model to force spectroscopy data collected by AFM we reveal the underlying principles and demonstrate their universality.  相似文献   

3.
Cylindrical micelles prepared in aqueous solutions from cationic surfactants octadecyl trimethylammonium (OTA+) or cetyltrimethylammonium (CTA+) and parachlorobenzoate (PCB) counterion were successfully imaged after evaporation of water using tapping mode atomic force microscopy (TM-AFM) onto very smooth gold and glass substrates. With the help of the obtained topography AFM images, it was shown that the micellar structures are preserved on gold substrates after evaporation of the solvent despite the new set of stresses due mainly to capillary forces and dehydration. The influence of the substrate on the resulting micellar morphology observed in air was investigated for these two materials: cylindrical micelles were evidenced as loosely adherent on gold surface in the presence of parachlorobenzoate (PCB) and identical, geometrically speaking, to those known to exist in aqueous solutions. In this situation, topographic AFM images allowed us to determine accurately their geometrical characteristics such as diameter and length in the nanometer range. On the other hand, AFM images obtained in air on glass surfaces revealed micellar structures that are different from those existing in the bulk of the solution. Indeed, bilayer-type micelles with a thickness close to twice the surfactant monomer expected length were observed, indicating that the well-established and strong influence of glass on micelle geometry at the glass/solution interface is maintained after evaporation of water. These results have been analyzed on the basis of positive charge of gold deduced from electrochemical impedance spectroscopy (EIS) and Raman spectroscopy measurements on one hand and of the negative charge of glass on the other hand. Although these results appeal to new theoretical considerations dealing with dynamics of evaporation of micellar solution drops and/or with counterion contributions to macromolecular interactions in aqueous solutions and in air, this new AFM imaging method appears to be the more adequate one to image and measure the micelles formed in the presence of water.  相似文献   

4.
Hydrophilic silicon wafers are studied against aqueous solutions of hexadecyl trimethyl ammonium bromide (CTAB) at concentrations between 0.05 mM up to 1 mM (CMC). AFM studies show that nanobubbles are formed at concentrations up to 0.4 mM. From 0.5 mM upward, no bubbles could be detected. This is interpreted as the formation of hydrophobic domains of surfactant aggregates, becoming hydrophilic at about 0.5 mM. The high contact angle of the nanobubbles (140-150° through water) indicates that the nanobubbles are located on the surfactant domains. A combined imaging and colloidal probe AFM study serves to highlight the surfactant patches adsorbed at the surface via nanobubbles. The nanobubbles have a diameter between 30 and 60 nm (after tip deconvolution), depending on the surfactant concentration. This corresponds to a Laplace pressure of about 30 atm. The presence of the nanobubbles is correlated with force measurements between a silica probe and a silicon wafer surface. The study is a contribution to the better understanding of the short-range attraction between hydrophilic surfaces exposed to a surfactant solution.  相似文献   

5.
On the basis of the Einstein theory of viscosity of dispersion, a parameter, termed as solvation factor, is presented to evaluate the solvation degree of nanoscale particles dispersed in a liquid in this work. The value of the parameter is obtained through the measurements of relative viscosity of the dispersions as a function of the volume fraction of dry particles. The solvation factor has been used to study the hydration layers near nanoscale silica particles dispersed in water and aqueous electrolyte (NaCl and CaCl2) solutions in this work. The experimental results have shown that a strong hydration indeed applied to the silica surfaces in aqueous solutions, leaving a large volume of hydration layers on the surfaces. Also, it has been found that the hydration of the nanoscale silica particles could be greatly enhanced if they were dispersed in aqueous NaCl or CaCl2 solutions, which might be attributed to that the hydrated cations (Na+ or Ca2+) bind onto the silica/ water interface and thus increase the volume of the hydration layers.  相似文献   

6.
Determination of the surface roughness by AFM is crucial to the study of particle fouling in nanofiltration. It is, however, very difficult to compare the different roughness values reported in the literature because of a lack in uniformity in the methods applied to determine surface roughness. AFM is used in both noncontact mode and tapping mode; moreover, the size of the scan area is highly variable. This study compares, for six different nanofiltration membranes (UTC-20, N30F, Desal 51HL, Desal 5DL, NTR7450, NF-PES-10), noncontact mode AFM with tapping mode AFM for several sizes of the scan area. Although the absolute roughness values are different for noncontact AFM and tapping mode AFM, no difference is found between the two modes of AFM in ranking the nanofiltration membranes with respect to their surface roughness. NTR 7450 and NF-PES-10 are the smoothest membranes, while the roughest surface can be found with Desal 51HL and Desal 5DL. UTC-20 and N30F are characterized by an intermediate roughness value. An increase in roughness with increasing scan area is observed for both AFM modes. Larger differences between the roughnesses of the membranes are obtained with tapping mode AFM because of the tapping of the tip on the surface. Phase imaging is an extension of tapping mode AFM, measuring the phase shift between the cantilever oscillation and the oscillation of the piezo driver. This phase shift reflects the interaction between the cantilever and the membrane surface. A comparison with contact angle measurements proves that a small phase shift corresponds to a large contact angle, representing a hydrophobic membrane surface.  相似文献   

7.
Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2 nm) that decays exponentially. These results cannot be explained in terms of the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, which only considers two types of forces: the electrical double-layer repulsion and the London-van der Waals attraction. Although there is a controversy about the origin of the short-range repulsive force, the existence of a structured layer of water molecules at the silica surface is the most accepted explanation for it. The overlap of structured water layers of different surfaces leads to repulsive forces, which are known as hydration forces. This assumption is based on the very hydrophilic nature of silica. Different theories have been developed in order to reproduce the exponentially decaying behavior (as a function of the separation distance) of the hydration forces. Different mechanisms for the formation of the structured water layer around the silica surfaces are considered by each theory. By the aid of an AFM and the colloid probe technique, the interaction forces between silica surfaces have been measured directly at different pH values and salt concentrations. The results confirm the presence of the short-range repulsion at any experimental condition (even at high salt concentration). A comparison between the experimental data and theoretical fits obtained from different theories has been performed in order to elucidate the nature of this non-DLVO repulsive force.  相似文献   

8.
A novel organic‐silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed‐mode per aqueous and ion‐exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro‐osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water‐rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed‐mode mechanism of hydrophobic and ion‐exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine‐modified organic‐silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.  相似文献   

9.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

10.
Despite the success of DLVO theory, there exist numerous examples of interactions that do not follow its predictions. One prominent example is the interaction between hydrophilic surfaces in mixtures of water with another polar, associating solvent. Interactions of such surfaces are still poorly understood yet play a key role in a wide variety of processes in nature, biology, and industry. The interaction forces between a silica sphere and a glass plate in N-methyl-2-pyrrolidone (NMP)-water binary mixtures were measured using the AFM technique. The interactions in pure NMP and pure water agreed qualitatively with DLVO theory. In contrast, the addition of NMP to water drastically altered the interactions, which no longer followed DLVO predictions. An unusually strong, long-range (50-80 nm), multistepped attractive force was observed on the approach of hydrophilic surfaces in the NMP concentration range of 30-50 vol %, where the adhesive pull-off force was also maximized. The maximum attractive force was observed at an NMP concentration near 30 vol %, consistent with the formation of a strong hydrogen-bonded complex between NMP and water near the solid surface. The analysis of force profiles, zeta potentials, solution viscosity, and contact angles suggests that attraction arises from the bridging of surface-adsorbed macrocluster layers known to form on hydrophilic surfaces in mixtures of associating liquids.  相似文献   

11.
We studied mixtures of aqueous solutions of cationic hydroxyethylcellulose JR400 polymer and anionic sodium dodecyl sulfate using dynamic light scattering and atomic force microscopy (AFM). A ternary phase diagram was established showing three interesting realms of the polymer-surfactant-water mixture: a preprecipitation area of lowered viscosity (polymer excess) compared to the pure polymer solution, a postprecipitation area (resolubilization at surfactant excess), and highly diluted samples with a stoichiometrical surfactant-polymer ratio close to that of maximum precipitation. Samples with various compositions representing these areas were imaged by atomic force microscopy on mica and on hydrophobically modified silica in contact mode. A correlation between light scattering data concerning particle size and, more important, structuring in the bulk on one hand and AFM images on the other hand was observed. It was revealed that the influence of surface properties is of less importance for adsorption, compared to the influence of the mixture in the bulk, provided that the mixture is prepared prior to adsorption.  相似文献   

12.
This work was motivated by the unexpected values of adhesion forces measured between an atomic force microscopy tip and the hydrophobic surface of ultra-high-molecular-weight polyethylene. Two types of samples with different roughness but similar wettability were tested. Adhesion forces of similar magnitude were obtained in air and in polar liquids (water and Hank's Balanced Salt Solution, a saline solution) with the rougher sample. In contrast, the adhesion forces measured on the smoother sample in air were much higher than those measured in water or in the aqueous solution. Those experimental results suggested the presence of nanobubbles at the interface between the rough sample and the polar liquids. The existence of the nanobubbles was further confirmed by the images of the interface obtained in noncontact tapping mode. The adhesion forces measured in a nonpolar liquid (hexadecane) were small and of the same order of magnitude for both samples and their values were in good agreement with the predictions of the London-Hamaker approach for the van der Waals interactions. Finally, we correlate the appearance of nanobubbles with surface topography. The conclusion of this work is that adhesion forces measured in aqueous media may be strongly affected by the presence of nanobubbles if the surface presents topographical accidents.  相似文献   

13.
The pH-responsive behavior for a series of lightly cross-linked, sterically stabilized poly(tertiary amine methacrylate)-based latexes adsorbed onto mica and silica was investigated using in situ tapping mode AFM at room temperature. The adsorbed layer structure was primarily determined by the glass transition temperature, T(g), of the latex: poly[2-(diethylamino)ethyl methacrylate]-based particles coalesced to form relatively featureless uniform thin films, whereas the higher T(g) poly[2-(diisopropylamino)ethyl methacrylate] latexes retained their original particulate character. Adsorption was enhanced by using a cationic poly[2-(dimethylamino)ethyl methacrylate] steric stabilizer, rather than a nonionic poly(ethylene glycol)-based stabilizer, since the former led to stronger electrostatic binding to the oppositely charged substrate. Both types of adsorbed latexes acquired cationic microgel character and swelled appreciably at low pH, even those that had coalesced to form films. Fluorescence spectroscopy was used to study the capture of a model hydrophobic probe, pyrene, by these adsorbed latex layers followed by its subsequent release by lowering the solution pH. The repeated capture and release of pyrene through several pH cycles was also demonstrated. Since these poly(tertiary amine methacrylate) latexes are readily prepared by aqueous emulsion polymerization and adsorption occurs spontaneously from aqueous solution, this may constitute an attractive route for the surface modification of silica, mica and other oxides.  相似文献   

14.
The adsorption of a zwitterionic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-block-poly(methacrylic acid) (PDEA59-PMAA50), at the silica/aqueous solution interface has been characterised as a function of pH. In acidic solution, this copolymer forms core-shell micelles with the neutral PMAA chains being located in the hydrophobic cores and the protonated PDEA chains forming the cationic micelle coronas. In alkaline solution, the copolymer forms the analogous inverted micelles with anionic PMAA coronas and hydrophobic PDEA cores. The morphology of the adsorbed layer was observed in situ using soft-contact atomic force microscopy (AFM): this technique suggests the formation of a thin adsorbed layer at pH 4 due to the adsorption of individual copolymer chains (unimers) rather than micelle aggregates. This is supported by the remarkably low dissipation values and the relatively low degrees of hydration for the adsorbed layers, as estimated using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). In alkaline solution, analysis of the adsorption data suggests a conformation for the adsorbed copolymers where one block projects normal to the solid/liquid interface; this layer consists of a hydrophobic PDEA anchor block adsorbed on the silica surface and an anionic PMAA buoy block extending into the solution phase. Tapping mode AFM studies were also carried out on the silica surfaces after removal from the copolymer solutions and subsequent drying. Interestingly, in these cases micelle-like surface aggregates were observed from both acidic and alkaline solutions. The lateral dimension of the aggregates seen is consistent with the corresponding hydrodynamic diameter of the copolymer micelles in bulk solution. The combination of the in situ and ex situ AFM data provides evidence that, for this copolymer, micelle aggregates are only seen in the ex situ dry state as a result of the substrate withdrawal and drying process. It remains unclear whether these aggregates are caused by micelle deposition at the surface during the substrate withdrawal from the solution or as a result of unimer rearrangements at the drying front as the liquid recedes from the surface.  相似文献   

15.
Scanning tunneling microscopy (STM) and noncontact tapping mode atomic force microscopy (AFM) have been employed to study on a local scale the structural and, for the first time, the chemical changes of carbon black (CB) particles following plasma oxidation. STM imaging of the pristine, untreated particles revealed a relatively ordered structure of tiny crystallites with a few amorphous regions. After plasma treatment, the crystallites were no longer observed and the CB particle surface exhibited a noticeable and ubiquitous increase in atomic-scale disorder. Phase contrast images obtained with noncontact tapping mode AFM indicated that the untreated CB particles were essentially hydrophobic as a pristine basal surface of graphite, but with occasional hydrophilic patches. By contrast, their plasma-treated counterparts displayed enhanced hydrophilicity as a result of the introduction of oxygen onto the CB surface, the presence of which was evidenced by X-ray photoelectron spectroscopy, but most significantly, such enhancement was observed to be quite uniform at a local scale of individual particles. The possibility of investigating on a very local scale the chemical behavior of oxidized CB particles should be useful for the control and optimization of their dispersion properties in different systems.  相似文献   

16.
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.  相似文献   

17.
Surface changes on muscovite mica induced by tip-surface interactions in atomic force microscopy (AFM) experiments under liquids are described. Investigations have been performed with AFM operated both in contact mode (CM-AFM) and in tapping mode (TM-AFM). Additionally, force-distance measurements have been carried out. In contrast to CM-AFM pronounced surface changes can be observed in TM-AFM experiments. However, TM-AFM images of areas previously scanned in contact mode show that imaging in contact mode changes the surface, too. An evaluation of force-distance measurements reveals that these changes depend on the adhesive interaction between tip and sample, which in turn strongly depends on the surrounding medium. The artefact can be avoided by changing the pH-value of the medium or by working with mixtures of ethanol and water. This greatly enhances the applicability of TM-AFM for in-situ investigation of surface processes on mica, which is a frequently used substrate for many technological and biological applications.  相似文献   

18.
Atomic force microscopy (AFM) of porphyrin aggregates formed on silica from acidic aqueous solution is used to investigate the basis for the previously reported counterion dependence of the optical spectra of aggregates of H(2)TCPP(2+), the diacid form of tetra(p-carboxyphenyl)porphyrin (TCPP). Resonance light scattering confirms the presence of excitonically coupled porphyrin aggregates in solutions of H(2)TCPP(2+) in both aqueous HCl and HNO(3). Aggregates formed in aqueous HNO(3) solutions show resonance light scattering (RLS) at wavelengths within both the H and J aggregate absorption bands and are imaged on the surface of silica as nanorods about 3 to 4 nm in height. H(2)TCPP(2+) aggregates in aqueous HCl solution exhibit RLS when excited within the blue-shifted Soret band (H band) and produce AFM images on silica of ring-shaped structures ranging from about 200 to 2000 nm in diameter. Fluorescence excitation and emission spectra reveal quenching of the Q-band emission in the aggregates at a pH less than 1 and confirm the existence of a single species, assigned to a dimer, at a pH just above 1. The morphology of the nanostructures as revealed by AFM provides insight into the structural basis for the counterion-dependent optical properties of H(2)TCPP(2+) aggregates.  相似文献   

19.
Nanografting, an atomic force microscopy (AFM) based nanolithography technique, is becoming a popular method for patterning self-assembled monolayers (SAMs). In this technique, a nanoscale patch of a thiol-on-gold SAM is exchanged with a different thiol by the action of an AFM tip operated in contact mode at high load. The results are then imaged in topographic or lateral force microscopy again at low values of the load. One of the problems of contact mode nanografting is that monolayers of large molecules such as proteins are likely to be deformed, damaged, or even removed from the surface by contact mode imaging even when small loads are used. Furthermore, we need to note that the stiffness of the cantilevers used in contact mode is different than that of the cantilevers used in tapping mode and that tip changing in the course of an experiment can be quite inconvenient. Here, we show that a monolayer on a gold substrate can be nanografted using tapping mode AFM (also referred to as amplitude modulation AFM) rather than the commonly used contact mode. While the grafting parameters are somewhat trickier to choose, the results demonstrate that nanografting in tapping mode can make patches of the same quality as those made by contact mode, therefore allowing for gentle imaging of the grafted molecules and the whole SAM without changing the microscope tip.  相似文献   

20.
Using contact angle measurements, surface force balance experiments, and AFM imaging, we have investigated the process of self-assembly of surfactants onto mica and the subsequent stability of those layers in pure water. In the case of cetyltrimethylammonium bromide (CTAB), the stability of a monolayer when immersed in pure water is found to be dependent on initial immersion time in surfactant, which is likely to be caused by an increase in the proportion of ion-exchange to ion-pair adsorption when incubated in surfactant for longer periods of time. Infinite dilution of the surfactant solution before withdrawal of the sample is found to have little effect on the stability of the resulting layer in pure water. The nature of the counterion is found to affect dramatically the stability of a self-assembled surfactant monolayer: cetyltrimethylammonium fluoride (CTAF) forms a layer that is much more stable in water than CTAB, which is likely to be due to faster and more complete ion-exchange with the mica surface for CTAF. Surface force balance experiments show that when the hydrophobic monolayer is immersed in pure water it does not simply dissolve into the water; instead it rearranges, possibly to patches of bilayer or hemimicelles. The time scale of this rearrangement agrees well with the time scale of the change from a hydrophobic to more hydrophilic surface observed using contact angle measurements. AFM imaging has also in some cases shown an evolution from an even monolayer to patches of bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号