首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New polymer organogelators, which are composed of poly(ethylene glycol), poly(propylene glycol), and poly(dimethylsiloxane)s as a polymer segment and L ‐isoleucine and L ‐valine derivatives as a gelation‐causing segment, were synthesized, and their organogelation properties were examined in organic solvents and oils. These polymer organogelators formed organogels in many organic solvents and oils, and their gels were thermally stable and had a high mechanical strength. Furthermore, the effects of the polymer backbone on the organogelation is discussed using FTIR spectroscopy, field emission scanning electron microscope observation, and analysis of thermal stability and strength of the organogel. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 353–361, 2008  相似文献   

2.
A simple method to fabricate polymer nanocomposites with single‐walled carbon nanotubes is reported, in which the nanotubes were reacted with poly(L ‐lysine) by using high‐speed vibration milling. The nanocomposites obtained were characterized by Fourier transform infrared (FT‐IR), UV–Vis spectroscopy, and thermogravimetric methods. The morphology as well as the dispersion of the carbon nanotubes were determined by scanning and transmission electron microscopy.

  相似文献   


3.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


4.
This study applied the macromonomers and glycidyl methacrylate (GMA) to synthesize a series of the graft copolymers, poly(GMA)‐graft‐poly(Z‐L ‐lysine), and investigated the conformation of the graft copolymer. The graft copolymers were synthesized with different GMA monomer ratios (28 to 89%) and different degrees of polymerization (DP) (8 to 15) of the poly(Z‐L ‐lysine) side chain to analyze secondary structure relationships. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and both wide angle and small angle X‐ray scattering spectroscopy (WAXS, SAXS) were used to investigate the relationship between the microstructure and conformation of the graft copolymers and the different monomer ratios and side chain DP. In AFM images, n8‐G89 (the graft copolymer containing 89% GMA units and the macromonomer DP is 8) showed tiny and uniform rod‐like structures, and n14‐G43 (the graft copolymer containing 43% GMA units and the macromonomer DP is 14) showed uniform rod‐like structures. FTIR spectra of the graft copolymers showed that the variations of α‐helix and β‐sheet secondary structures in the graft copolymers relate to the monomer ratios of the graft copolymers. However, the X‐ray scattering patterns indicated that the graft copolymer conformations were mainly dependent on the poly(Z‐L ‐lysine) side chain length, and these results were completely in accordance with the AFM images. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4655–4669, 2009  相似文献   

5.
Poly(3‐hexylthiophene)‐b‐poly(γ‐benzyl‐L ‐glutamate) (P3HT‐b‐PBLG) rod–rod diblock copolymer was synthesized by a ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride using a benzylamine‐terminated regioregular P3HT macroinitiator. The opto‐electronic properties of the diblock copolymer have been investigated. The P3HT precursor and the P3HT‐b‐PBLG have similar UV–Vis spectra both in solution and solid state, indicating that the presence of PBLG block does not decrease the effective conjugation length of the semiconducting polythiophene segment. The copolymer displays solvatochromic behavior in THF/water mixtures. The morphology of the diblock copolymer depends upon the solvent used for film casting and annealing results in morphological changes for both films deposited from chloroform and trichlorobenzene.

  相似文献   


6.
7.
Poly‐(L ‐lysine citramide) is a degradable drug carrier of the polyelectrolyte type that is composed of citric acid and L ‐lysine building blocks. In a previous work, poly‐(L ‐lysine citramide) was synthesized by the interfacial polycondensation of α‐hydroxy acid protected citryl dichloride with COOH‐protected lysine diamine. Because of head‐to‐head and head‐to‐tail and tail‐to‐tail linkages in the chains as well as various side reactions such as deprotection of the α‐hydroxy acid moieties and intramolecular imide ring formation, a very large family of degradable polyelectrolyte copolymers was obtained. All the members of this family hydrolytically degrade to the same end products. In this study, another route was explored based on the polycondensation of α‐hydroxy acid protected citric acid pentafluorophenyl diesters, namely, citrobenzal dipentafluorophenyl and citrochloral dipentafluorophenyl with NN′‐trimethylsilylated COOH‐protected L ‐lysine. The resulting polymers were characterized by IR, NMR, and size exclusion chromatographic analyses. The resulting chain structures and repeat units were identified from these characterizations and are discussed as compared with characteristics exhibited by analogous polymers resulting from interfacial polycondensation. Differences observed at the intermediate stage involving protected polymers were largely erased during the final deprotection stage because of imide formation during final hydrolysis under the selected conditions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3475–3484, 2001  相似文献   

8.
A novel star‐shaped polymer, porphyrin‐poly(L‐lysine) dendrons (PP‐PLLD), is synthesized by the click reaction between azido‐modified porphyrin and propargyl focal point poly(L‐lysine) dendrons. Its chemical structure is characterized by 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and gel permeation chromatography (GPC) is analyses etc. Due to its amphiphilic property, the obtained PP‐PLLD has a low critical micelle concentration in an aqueous solution, and can load doxorubicin (DOX) with a loading amount of 64 μg mg−1. By in vitro toxicity assay, PP‐PLLD has no dark cytotoxicity but has significant phototoxicity. Moreover, DOX‐loaded PP‐PLLD shows a higher cytotoxicity under the light condition than PP‐PLLD or DOX alone, suggesting PP‐PLLD has a potential application in combined photodynamic therapy and chemotherapy.  相似文献   

9.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

10.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

11.
The monomers 2‐methyl‐2‐oxazine (MeOZI), 2‐ethyl‐2‐oxazine (EtOZI), and 2‐n‐propyl‐2‐oxazine (nPropOZI) were synthesized and polymerized via the living cationic ring‐opening polymerization (CROP) under microwave‐assisted conditions. pEtOZI and pnPropOZI were found to be thermoresponsive, exhibiting LCST behavior in water and their cloud point temperatures (TCP) are lower than for poly(2‐oxazoline)s with similar side chains. However, comparison of poly(2‐oxazine) and poly(2‐oxazoline)s isomers reveals that poly(2‐oxazine)s are more water soluble, indicating that the side chain has a stronger impact on polymer solubility than the main chain. In conclusion, variations of both the side chains and the main chains of the poly(cyclic imino ether)s resulted in a series of distinct homopolymers with tunable TCP.  相似文献   

12.
The poly(L ‐lactide) (PLA)‐degrading ability of actinomycetes obtained from culture collections was examined by the formation of clear zones on PLA‐emulsified agar plates. Using 41 genera (105 strains) of actinomycetes with phylogenetic affiliations based on 16S rRNA sequences, PLA degraders were found to be limited to members of the family Pseudonocardiaceae and related genera. They included Amycolatopsis, Saccharothrix, Lentzea, Kibdelosporangium, and Streptoalloteichus. A large number of PLA degraders were widely distributed within the genus Saccharothrix. Most strains forming clear zones on PLA‐emulsified agar plates also formed clear zones on silk fibroin agar plates. Saccharothrix species showed an ability to degrade PLA films and assimilate degradation products in liquid cultures. No significant change of the molecular weight and polydispersity (M w/M n) of the remaining film fragments was confirmed. After cultivation for two weeks, many irregular holes/pits on the surface of the film due to the colonization of microorganisms were observed by scanning electron microscopy.

Scanning electron micrograph of the surface of PLA film: A. orientalis subsp. orientalis IFO 12362 after 14 d.  相似文献   


13.
Libraries of 3‐aminopropyl‐terminated poly(dimethylsiloxane) (APT–PDMS) and poly(?‐caprolactone)–poly(dimethylsiloxane)–poly(?‐caprolactone) (PCL—PDMS–PCL) triblock copolymers were synthesized. Preliminary experiments were carried out to select an appropriate catalyst and route for the poly(dimethylsiloxane) synthesis, and trial experiments were conducted to verify the successful synthesis of the intended polymer compositions. Then, a series of APT–PDMS oligomers were synthesized with an automated combinatorial high‐throughput synthesis system to cover a molecular weight range of 2500–50,000 g/mol. Trial PCL—PDMS–PCL triblock copolymers were synthesized with the automated reactor system and characterized in detail with rapid gel permeation chromatography, high‐throughput Fourier transform infrared, nuclear magnetic resonance, and differential scanning calorimetry. Finally, two library synthesis experiments were carried out in which the lengths of both the poly(dimethylsiloxane) and poly(?‐caprolactone) blocks in the PCL—PDMS–PCL triblock copolymers were varied. The results obtained from these experiments demonstrated that it was possible to synthesize libraries of well‐defined APT–PDMS oligomers and PCL—PDMS–PCL triblock copolymers with an automated high‐throughput system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4880–4894, 2006  相似文献   

14.
Summary: Self‐association behaviors of poly(γ‐benzyl L ‐glutamate)‐graft‐poly(ethylene glycol) (PBLG‐graft‐PEG) and its mixtures with PBLG homopolymer in aqueous media were investigated by fluorescence spectroscopy, transmission electron microscopy (TEM), and nuclear magnetic resonance (NMR) spectroscopy. It was revealed that PBLG‐graft‐PEG could self‐assemble to form polymeric micelles with a core‐shell structure in the shape of spindle. The introduction of PBLG homopolymer not only decreases the critical micelle concentration, but also changes the morphology of the micelles.

The excitation fluorescence spectra of pyrene as a function of concentrations for the mixture of PBLG‐graft‐PEG with PBLG and a TEM image of the formed micelles.  相似文献   


15.
Summary: New polymer gelators consisting of poly(propylene glycol) or poly(ethylene glycol) and L ‐lysine‐based low‐molecular‐weight gelators have been developed. These polymer gelators were synthesized according to a simple procedure with high reaction yield, and formed organogels in many organic solvents. The organogelation mechanism was proposed from the transmission electron microscopy and FTIR spectroscopy studies.

Structures of the polymer gelators synthesized here.  相似文献   


16.
The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM‐41 nanoparticles functionalized on the outer surface with polymer ε‐poly‐L ‐lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)3]2+. An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate‐functionalized MCM‐41 nanoparticles with the lysine amino groups located on the ε‐poly‐L ‐lysine backbone (solid Ru‐rLys‐S1 ). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl‐functionalized MCM‐41 nanoparticles (solid Ru‐tLys‐S1 ). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer ε‐poly‐L ‐lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer’s amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme‐controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug‐delivery systems was tested by preparing the corresponding ε‐poly‐L ‐lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT‐rLys‐S1 and CPT‐tLys‐S1 . Cellular uptake and cell‐death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated.  相似文献   

17.
Poly(dimethylsiloxane) copolymers containing a small fraction of carboxylic acid or Zn‐carboxylate groups were prepared and compared regarding reversible gelation by hydrogen‐bonding and ion‐pair interaction. The polymers were synthesized by condensation of a t‐butylcarboxylate functionalized dichlorosilane with an α,ω‐dihydroxy‐poly(dimethylsiloxane), followed by thermal cleavage of the ester bond. Neutralization of the resulting carboxylic acid substituents was achieved by addition of Zn (acac)2. Reversible crosslinking was investigated by step stress and oscillating shear experiments. The carboxylic acid containing poly(dimethylsiloxane) became rubberlike upon increasing the temperature and liquified again when it was brought back to room temperature. This observation has been explained tentatively by segregation of the carboxylic acid groups into polar domains at high temperatures [i.e., a behavior like it is observed for systems with a lower critical solution temperature (LCST)]. At ambient temperature, the carboxylic acid groups undergo hydrogen bonding to the Si–O–Si backbone. Clustering of the carboxylic acid groups occurs only as these hydrogen bonds break upon raising temperature. Moisture was found to have a strong influence on the reversal of the crosslinking. Addition of zinc acetylacetonate resulted in the formation of an elastic network already at ambient conditions consistent with the concept of ionomers which undergo reversible gelation by formation of ion‐pair multiplets and clusters in the hydrophobic polymer matrix in particularly at low temperatures. At high temperature, both the carboxylic acid and the carboxylate sample exhibited a rather similar viscoelastic behavior consistent with a common structure where transient crosslinks are formed by clusters of the carboxylic acid and the carboxylate groups. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 485–495, 1999  相似文献   

18.
Binary solvent mixtures were routinely used to induce the hierarchical assembly of poly(3‐hexylthiophene) (P3HT) in the liquid phase. This technique has garnered a lot of interest as a route to well‐organized films and composites, but, to date, the impact that the attributes of the liquid‐phase aggregates and solvent mixtures have on the organization of the films have only been partially scrutinized. The molecular weight and concentration dependence of P3HT assembly in three binary solvent mixtures containing chloroform and acetonitrile, n‐hexane, or dichloromethane were studied using ultraviolet/visible absorbance spectroscopy and dynamic light scattering techniques. Films drop cast under slow and rapid evaporation conditions were observed using optical and atomic force microscopy. In general, there is no evidence that the characteristics of the liquid phase P3HT aggregates impact the structures of the films, but films cast from these solvent mixtures under rapid evaporation conditions exhibit an array of disparate morphologies and mesoscale patterning. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 624–638  相似文献   

19.
Summary: Poly(dimethylsiloxane) (PDMS) star polymers having a nanosized silica particle as a core were prepared by reacting silica nanoparticles with monoglycidylether‐terminated poly(dimethylsiloxane). This star polymer was a hybrid material having an extremely high content of silica. The PDMS arms formed an organic domain to separate the silica particles and to prevent particle aggregation. The star polymers exhibited good thermal stability and high activation energy of their degradation reaction, in comparison to the linear PDMS polymer and the PDMS/silica blending materials. This star polymer can be used as a flame retardant for polymeric materials and this preparation technique can be applied to prepare other star polymers.

An SEM image of poly(dimethylsiloxane) star polymers having nanosized silica particles as a core.  相似文献   


20.
Herein we show that a new amphiphilic poly(vinyl alcohol)‐b‐poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by reduction by sodium borohydride. After deposition of the so‐loaded micelles onto a silicon wafer, followed by an appropriate thermal treatment, the poly(acrylonitrile) core of the micelles is carbonized, while the poly(vinyl alcohol) shell is completely decomposed and volatilized, leading to gold encapsulated in carbon nanoparticles. The morphology of the micelles is maintained during thermal treatment without requiring shell‐cross‐linking of the micelles prior to pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号