首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cationic ring‐opening multibranching polymerization of 2‐hydroxymethyloxetane ( 1 ) as a novel latent AB2‐type monomer was carried out using trifluoromethane sulfonic acid or trifluoroboron diethyl etherate by a slow‐monomer‐addition (SMA) method. The polymer yield of poly‐1 ranged from ca. 58–88%, which increase with the increasing monomer addition time on the SMA method. The absolute molecular weights (Mw,MALLS) and the polydispersities of poly‐1 were in the range of 8,000–43,500 and 1.45–4.53, respectively, which also increased with the increasing monomer addition time. The Mark‐Houwink‐Sakurada exponents α in 0.2 M NaNO3 aq. were determined to be 0.02–0.25 for poly‐1 , indicating that poly‐1 has compact forms in the solution because of the highly branched structure. The degree of the branching value of poly‐1 , which was calculated by Frey's equation, ranged from ca. 0.50 to 0.58, which increased with the increasing monomer addition time. The steady shear flow of poly‐1 in aqueous solution exhibited a Newtonian behavior with steady shear viscosities independent of the shear rate. The results of the MALLS, NMR, and viscosity measurements indicated that poly‐1 is composed of a highly branched structure, i.e., the hyperbranched poly (2‐hydroxymethyloxetane). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A series of biocompatible and degradable hyperbranched polyether esters, poly(2‐hydroxyethyl 2‐methyloxirane‐2‐carboxylate) (pHEMOC) with controlled molecular weight (MW) and polydispersity (PD), have been synthesized via oxyanionic ring‐opening polymerization of HEMOC that was prepared by the epoxidation of 2‐hydroxyethyl methacrylate. pHEMOCs of their MWs ranging from about 500 to 20,000 with their PD values less than 1.5 are obtained simply by controlling 1,1,1‐tris‐hydroxymethylpropane initiator to HEMOC ratio. The pHEMOCs comprised of ether and ester backbones and multiple hydroxyl groups on the core and periphery results in materials that exhibit good degradability and low cytotoxicity, enabling them to be an ideal candidate material for biomedical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1643–1651  相似文献   

3.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

4.
Pseudo block and triblock copolymers were synthesized by the cationic ring‐opening copolymerization of 1,5,7,11‐tetraoxaspiro[5.5]undecane (SOC1) with trimethylene oxide (OX) via one‐shot and two‐shot procedures, respectively. When SOC1 and OX were copolymerized cationically with boron trifluoride etherate (BF3OEt2) as an initiator in CH2Cl2 at 25 °C, OX was consumed faster than SOC1. SOC1 was polymerized from the OX‐rich gradient copolymer produced in the initial stage of the copolymerization to afford the corresponding pseudo block copolymer, poly [(OX‐grad‐SOC1)‐b‐SOC1]. We also succeeded in the synthesis of a pseudo triblock copolymer by the addition of OX during the course of the polymerization of SOC1 before its complete consumption, which provided the corresponding pseudo triblock copolymer, poly[SOC1‐b‐(OX‐grad‐SOC1)‐b‐SOC1]. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3233–3241, 2006  相似文献   

5.
Anionic and cationic ring‐opening polymerizations of two novel cyclotrisiloxanes, tetramethyl‐1‐(3′‐trifluoromethylphenyl)‐1‐phenylcyclotrisiloxane ( I ) and tetramethyl‐1‐[3′,5′‐bis(trifluoromethyl)phenyl]‐1‐phenylcyclotrisiloxane ( II ), are reported. Anionic ring‐opening polymerization of I or II leads to copolymers with highly regular microstructures. Copolymers obtained by cationic polymerizations of I or II , initiated by triflic acid, have less regular microstructures characteristic of chemoselective polymerization processes. The composition and microstructure of copolymers have been characterized by 1H and 29Si‐NMR, the molecular weight distributions by GPC, and the thermal properties by DSC and TGA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5235–5243, 2004  相似文献   

6.
1‐[2′‐(Heptaphenylcyclotetrasiloxanyl)ethyl]‐1,3,3,5,5‐pentamethylcyclotetrasiloxane ( II ) was prepared from 1‐[2′‐(methyldichlorosilyl)ethyl]‐1,3,3,5,5,7,7‐heptaphenylcyclotetrasiloxane ( I ) and tetramethyldisiloxane‐1,3‐diol. Acid‐catalyzed ring‐opening of II in the presence of tetramethyldisiloxane gave 1,9‐dihydrido‐5‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( III ) and 1,9‐dihydrido‐3‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( IV ). Both acid‐ and base‐catalyzed ring‐opening polymerization of II gives highly viscous, transparent polymers. The structures of I – IV and polymers were determined by UV, IR, 1H, 13C, and 29Si NMR spectroscopy. In addition, molecular weights obtained by GPC and NMR end group analysis were confirmed with mass spectrometry. On the basis of 29Si NMR spectroscopy, the polymers appear to result exclusively from ring‐opening of the cyclotrisiloxane ring. No evidence for ring‐opening of the cyclotetrasiloxane ring was observed. Polymer properties were determined by DSC and TGA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 137–146, 2006  相似文献   

7.
Tri‐block copolymers of linear poly(ethylene glycol) (PEG) and hyperbranched poly‐3‐ethyl‐3‐(hydroxymethyl)oxetane (poly‐TMPO) are reported. The novel dumb‐bell shaped polyethers were synthesized in bulk with cationic ringopening polymerization utilizing BF3OEt2 as initiator, via drop‐wise addition of the oxetane monomer. The thermal properties of the materials were successfully tuned by varying the amount of poly‐TMPO attached to the PEG‐chains, ranging from a melting point of 54 °C and a degree of crystallinity of 76% for pure PEG, to a melting point of 35 °C and a degree of crystallinity of 12% for the polyether copolymer having an average of 14 TMPO units per PEG chain. The materials are of relatively low polydispersity, with Mn/Mw ranging from 1.2 to 1.4. The materials have been evaluated for usage with the energetic oxidizer ammonium dinitramide. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6191–6200, 2009  相似文献   

8.
9.
Synthesis and characterization of novel hydroxyl‐functionalized oxetane‐inimers with varied alkyl chain length—3‐hydroxymethyl‐3‐methoxymethyloxetane, 3‐hydroxymethyl‐3‐propoxymethyloxetane, and 3‐hexoxymethyl‐3‐hydroxymethyloxetane—is reported. Cationic ring‐opening polymerization of these latent, cyclic AB2‐monomers leads to hyperbranched (hb) polyether polyols with degrees of branching between 34 and 69%, confirmed by inverse‐gated (IG) 13C NMR spectroscopy. The hyperbranching polymerization yielded apparent molecular weights (Mn) ranging from 500 to 2500 g mol?1 (size exclusion chromatography). Remarkably, by copolymerization of 1,1,1‐tris(4‐hydroxyphenyl)ethane as a “focal” unit, polymerization under slow monomer addition conditions lead to higher apparent molecular weights up to 11,220 g mol?1. The end groups of the hb polymers were studied via matrix‐assisted laser desorption/ionization time of flight mass and NMR spectrometry. By varying the alkyl chain length, tailoring of the solubility and glass transition temperatures of the materials is possible. Potential applications range from macroinitiators with defined polarity to tailoring of surface properties of antifouling materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2850–2859  相似文献   

10.
The photoinitiated cationic ring‐opening polymerizations of certain epoxides and 3,3‐disubstituted oxetanes display the characteristics of frontal polymerizations. When irradiated with UV light, these monomers display a marked induction period, during which little conversion of the monomer to the polymer takes place. The local application of heat to an irradiated monomer sample results in polymerization that occurs as a front propagating rapidly throughout the entire reaction mass. For the characterization of these frontal polymerizations, the use of a new monitoring technique, employing optical pyrometry, has been instituted. This method provides a simple, rapid means of following these fast polymerizations and quantitatively determining their frontal velocities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1630–1646, 2004  相似文献   

11.
Chemistry of 2‐oxazolines is involved in the polymer synthesis fields of cationic ring‐opening polymerization (CROP) and enzymatic ring‐opening polyaddition (EROPA), although both polymerizations look like a quite different class of reaction. The key for the polymerization to proceed is combination of the catalyst (initiator) and the design of monomers. This article describes recent developments in polymer synthesis via these two kinds of polymerizations to afford various functional polymers having completely different structures, poly(N‐acylethylenimine)s via CROP and 2‐amino‐2‐deoxy sugar unit‐containing oligo and polysaccharides via EROPA, respectively. From the viewpoint of reaction mode, an acid‐catalyzed ring‐opening polyaddition (ROPA) is considered to be a crossing where CROP and EROPA meet. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1251–1270, 2010  相似文献   

12.
The monomer concentration for the cationic ring‐opening polymerization of 2‐ethyl‐2‐oxazoline in N,N‐dimethylacetamide was optimized utilizing high‐throughput experimentation methods. Detailed 1H‐NMR spectroscopic investigations were performed to understand the mechanistic aspects of the observed concentration effects. Finally, the improved polymerization concentration was applied for the synthesis of higher molecular weight (> 10,000 Da) poly(2‐ethyl‐2‐oxazoline)s. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1487–1497, 2005  相似文献   

13.
The ring‐opening polymerization (ROP) of cyclic esters, such as ε‐caprolactone, 1,5‐dioxepan‐2‐one, and racemic lactide using the combination of 3‐phenyl‐1‐propanol as the initiator and triflimide (HNTf2) as the catalyst at room temperature with the [monomer]0/[initiator]0 ratio of 50/1 was investigated. The polymerizations homogeneously proceeded to afford poly(ε‐caprolactone) (PCL), poly(1,5‐dioxepan‐2‐one) (PDXO), and polylactide (PLA) with controlled molecular weights and narrow polydispersity indices. The molecular weight determined from an 1H NMR analysis (PCL, Mn,NMR = 5380; PDXO, Mn,NMR = 5820; PLA, Mn,NMR = 6490) showed good agreement with the calculated values. The 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analyses strongly indicated that the obtained compounds were the desired polyesters. The kinetic measurements confirmed the controlled/living nature for the HNTf2‐catalyzed ROP of cyclic esters. A series of functional alcohols, such as propargyl alcohol, 6‐azido‐1‐hexanol, N‐(2‐hydroxyethyl)maleimide, 5‐hexen‐1‐ol, and 2‐hydroxyethyl methacrylate, successfully produced end‐functionalized polyesters. In addition, poly(ethylene glycol)‐block‐polyester, poly(δ‐valerolactone)‐block‐poly(ε‐caprolactone), and poly(ε‐caprolactone)‐block‐polylactide were synthesized using the HNTf2‐catalyzed ROP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2455–2463  相似文献   

14.
A straightforward strategy for the synthesis and functionalization of polyurethanes (PUs) via the use of alkyne‐functionalized polytetrahydrofuran (PTHF) diols is described. The alkyne groups have been introduced into the PTHF chains by the cationic ring‐opening copolymerization of tetrahydrofuran and glycidyl propargyl ether. These PTHF prepolymers were combined with 1,4‐butanediol and hexamethylene diisocyanate for the synthesis of linear PUs with latent functionalization sites. The polyether segments of the PUs have then been coupled with several types of functionalized azides by the copper‐catalyzed azide‐alkyne “click” chemistry, for example with phosphonium containing azides for their antibacterial properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
1,3‐Dioxepane was polymerized with triflic acid as an initiator in the presence of acetic acid (AA) and hexane diacid. The structure of the poly(1,3‐dioxepane) (polyDOP) obtained was characterized by 1H NMR spectra and gel permeation chromatography. The molecular weights (MWs) were determined by vapor pressure osmometry. The results obtained in both systems were completely different from those in which low‐MW polyols were used as chain‐transfer agents. When the molar ratio of carboxylic acid to triflic acid was low, high‐MW polyDOP with a controlled MW and narrow MW distribution was obtained. The content of the ester group in the final product depended greatly on the molar ratio of AA to triflic acid. The polymerization mechanism is discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1232–1240, 2000  相似文献   

16.
A five‐membered cyclic dithiocarbonate having phenylcarbamate moiety 1 underwent cationic ring‐opening polymerization by using methyl trifluoromethanesulfonate as an initiator in nitrobenzene at 60 °C. Both of the corresponding first‐order kinetic plot and conversion‐molecular weight plot showed linearity to suggest the living fashion of the polymerization, which was then supported by two‐stage polymerization experiment. The living fashion as well as the regioselective formation of the repeating unit suggested significant contribution of the neighboring group participation of the carbamate group to form a stabilized cationic propagating end, of which structure was confirmed by performing an equimolar reaction of 1 and methyl trifluoromethanesulfonate with analyzing the resulting species by NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4459–4464, 2007  相似文献   

17.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

18.
This work deals with the cationic ring‐opening polymerization of the cyclic thiocarbonates 5‐benzoyloxymethyl‐5‐methyl‐1,3‐dioxane‐2‐thione ( 1 ), 5,5‐dimethyl‐1,3‐dioxane‐2‐thione ( 2 ), and 4‐benzoyloxymethyl‐1,3‐dioxane‐2‐thione ( 3 ). The polymerization was carried out with 2 mol % trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, boron trifluoride etherate, or triethyloxonium tetrafluoroborate as the initiator to afford the polythiocarbonate with a narrow molecular weight distribution accompanying isomerization of the thiocarbonate group. The molecular weight of the obtained polymer could be controlled by the feed ratio of the monomer to the initiator and increased when the second monomer was added to the polymerization mixture after the quantitative consumption of the monomer in the first stage. The block copolymerization of 2 and 3 was also achieved, and this supported the idea that the cationic ring‐opening polymerization of these monomers proceeded via a living process. The order of the polymerization rate was 3 > 2 > 1 . The cationic ring‐opening polymerization of 1 and 3 involved the neighboring group participation of ester groups according to the polymerization rate and molecular orbital calculations with the ab initio method. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 185–195, 2003  相似文献   

19.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Lipase‐catalyzed ring‐opening bulk polymerizations of 6(S)‐methyl‐morpholine‐2,5‐dione (MMD) were investigated. Selected commercial lipases were screened as catalysts for MMD polymerization at 100 °C. Polymerizations catalyzed with 10 wt % porcine pancreatic lipase type II crude (PPL), lipase from Pseudomonas cepacia, and lipase type VII from Candida rugosa resulted in MMD conversions of about 75% in 3 days and in molecular weights ranging from 8200 to 12,100. Poly(6‐methyl‐morpholine‐2,5‐dione) [poly(MMD)] had a carboxylic acid group at one end and a hydroxyl group at the other end. However, lipase from Mucor javanicus showed lower catalytic activity for the polymerization. During the polymerization, racemization of the lactate residue took place. PPL was selected for further studies. The rate of polymerization increased with increasing PPL concentration under otherwise identical conditions. When the PPL concentration was 5 or 10 wt % with respect to MMD, a conversion of about 70% was reached after 6 days or 1 day, respectively, whereas for a PPL concentration of 1 wt %, the conversion was less than 20% even after 6 days. High concentrations of PPL (10 wt %) resulted in high number‐average molecular weights (<3 days); with a lower concentration of PPL, lower molecular weight poly(MMD) was obtained. The concentration of water was an important factor that controlled not only the conversion but also the molecular weight. With increasing water content, enhanced polymerization rates were achieved, whereas the molecular weight of poly(MMD) decreased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3030–3039, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号