首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
Diammonium tricyanomelaminate dihydrate [NH4]2[C6N9H] · 2 H2O ( 1 ) and dimelaminium tricyanomelaminate melamine dihydrate [C3N6H7]2[C6N9H] · C3N6H6 · 2 H2O ( 2 ) were obtained by metathesis reactions from Na3[C6N9] in aqueous solution and characterized by single‐crystal X‐ray diffraction and 15N solid‐state NMR spectroscopy ( 1 ). Both salts contain mono‐protonated tricyanomelaminate (TCM) anions and crystallize as dihydrates. Considering charge balance requirements, the crystal structure of 1 (C2/c, a = 3181.8(6) pm, b = 360.01(7) pm, c = 2190.4(4) pm, β = 112.39(3)°, V = 2319.9(8) 106 · pm3) can best be described by assuming a random distribution of an ammonium ion – crystal water pair over two energetically similar sites. Apart from two melaminium cations, 2 (P21/c, a = 674.7(5) pm, b = 1123.6(5) pm, c = 3400.2(5) pm, β = 95.398(5), V = 2566(2) 106 · pm3) contains one neutral melamine per formula unit acting as an additional “solvent” molecule and yielding a donor‐acceptor type of π–stacking interaction.  相似文献   

2.
The isotypic nitridosilicates Li4Ca3Si2N6 and Li4Sr3Si2N6 were synthesized by reaction of strontium or calcium with Si(NH)2 and additional excess of Li3N in weld shut tantalum ampoules. The crystal structure, which has been solved by single‐crystal X‐ray diffraction (Li4Sr3Si2N6: C2/m, Z = 2, a = 6.1268(12), b = 9.6866(19), c = 6.2200(12) Å, β = 90.24(3)°, wR2 = 0.0903) is made up from isolated [Si2N6]10– ions and is isotypic to Li4Sr3Ge2N6. The bonding angels and distances within the edge‐sharing [Si2N6]10– double‐tetrahedra are strongly dependent on the lewis acidity of the counterions. This finding is discussed in relation to the compounds Ca5Si2N6 and Ba5Si2N6, which also exhibit isolated [Si2N6]10– ions.  相似文献   

3.
New Alkali Cyclosilicates: Cs5AgSi3O9 and Cs6Na6Si6O18 The new cyclosilicates were obtained from reactions of the binary oxides at 450–500 °C under inert gas atmosphere. Cs5AgSi3O9 crystallizes in the space group P21/m with the lattice constants a = 968,2(2) pm, b = 652,7(1) pm, c = 1162,6(3) pm, β = 93,84(2)° and Cs6Na6Si6O18 in R‐3m with a = 1208,0(1) pm, c = 1458,9(2) pm (IPDS data sets). The characteristic features are isolated rings, [Si3O9]6– and [Si6O18]12–, respectively. In Cs5AgSi3O9 these are connected via Ag+ to chains. Layers of [NaO4]‐tetrahedra separate the hexameric rings in Cs6Na6Si6O18. Coordination numbers of caesium are observed between C.N. 3 and C.N. 9 in these alkali rich cyclosilicates. MAPLE calculations of both cyclosilicates as well as the absorption and IR spectrum of Cs5AgSi3O9 are presented. Preparative and thermoanalytical techniques have been used to investigate the reactivity of Cs5AgSi3O9 in the presence of cobalt and nickel metal.  相似文献   

4.
The new oxonitridosilicates Ba4?xCaxSi6N10O have been synthesized by means of high‐temperature synthesis in a radio‐frequency furnace, starting from calcium, barium, silicon diimide and amorphous silicon dioxide. The maximum reaction temperature was at about 1450 °C. The solid solution series Ba4?xCaxSi6N10O with a phase width 1.81 ≤ x ≤ 2.95 was obtained. The crystal structure of Ba1.8Ca2.2Si6N10O was determined by X‐ray single‐crystal structure determination (P213, no. 198), a = 1040.2(1) pm, Z = 4, wR2 = 0.082). It can be described as a highly condensed network of corner‐sharing SiN4 and SiON3 tetrahedra, the voids of which are occupied by the alkaline earth ions. The structure is isotypic with that of BaEu(Ba0.5Eu0.5)YbSi6N11. In the 29Si solid‐state MAS‐NMR spectrum two isotropic resonances at ?50.0 and ?53.6 ppm were observed.  相似文献   

5.
Ca5[Si2N6] and Ca7[NbSi2N9] were obtained by reaction of Ca3N2, Ca2N and Si3N4 (with addition of niobium powder in case of Ca7[NbSi2N9]) in closed tantalum ampoules at temperatures at 1060 °C and 1000 °C, respectively. Ca5[Si2N6] is monoclinic C2/c with a = 983.6(2) pm, b = 605.2(1) pm, c = 1275.7(3), β = 100.20(3)° and Z = 4 crystallising homotypically to Ba5[Si2N6]. The crystal structure contains pairs of edgesharing SiN4 tetrahedra forming isolated nitridosilicate anions of [Si2N6]10?. Ca7[NbSi2N9] is monoclinic P21/m with a = 605.1(1), b = 994.6(2), c = 899.7(2), β = 92.10(1)°, Z = 2 and crystallises in an hitherto unknown structure type. Ca7[NbSi2N9] contains isolated anions [NbSi2N9]14? which are composed of two edgesharing SiN4 tetrahedra and an edge‐sharing NbN5 pyramid. So far, such a pseudotrisilicate unit has not been observed in the family of silicates.  相似文献   

6.
Owing to a parity allowed 4f6(7F)5d1→4f7(8S7/2) transition, powders of the nominal composition Sr0.25Ba0.75Si2O2N2:Eu2+ (2 mol % Eu2+) show surprising intense blue emission (λem=472 nm) when excited by UV to blue radiation. Similarly to other phases in the system Sr1?xBaxSi2O2N2:Eu2+, the described compound is a promising phosphor material for pc‐LED applications as well. The FWHM of the emission band is 37 nm, representing the smallest value found for blue emitting (oxo)nitridosilicates so far. A combination of electron and X‐ray diffraction methods was used to determine the crystal structure of Sr0.25Ba0.75Si2O2N2:Eu2+. HRTEM images reveal the intergrowth of nanodomains with SrSi2O2N2 and BaSi2O2N2‐type structures, which leads to pronounced diffuse scattering. Taking into account the intergrowth, the structure of the BaSi2O2N2‐type domains was refined on single‐crystal diffraction data. In contrast to coplanar metal atom layers which are located between layers of condensed SiON3‐tetrahedra in pure BaSi2O2N2, in Sr0.25Ba0.75Si2O2N2:Eu2+ corrugated metal atom layers occur. HRTEM image simulations indicate cation ordering in the final structure model, which, in combination with the corrugated metal atom layers, explains the unexpected and excellent luminescence properties.  相似文献   

7.
A novel borophosphate, Zn3(C6H14N2)3[B6P12O39(OH)12] · (C6H14N2)[HPO4] has been synthesised under mild hydrothermal conditions at T = 165 °C. The chiral crystal structure was determined by single crystal X‐ray diffraction data (trigonal, R3 (no. 146), Z = 3, a = 2089.55(4) pm, c = 1237.03(4) pm, V = 4677.5(2) · 106 pm3, R1 = 0.066, wR2 = 0.164 for 5100 observed reflections). The title compound can be considered as an ordered composite of the two different and neutral structures which fit into each other: An open framework of composition Zn3(C6H14N2)3[B6P12O39(OH)12] and columns of composition (C6H14N2)[HPO4]. The framework structure is formed by mixed octahedral‐tetrahedral secondary building units, in a three‐dimensional arrangement reflecting a hierarchical derivative of the NbO structure type. The underlying NbO topology is illustrated with the help of Periodic Nodal Surfaces. The composite nature of the compound is resolved in the spatial segregation of two frameworks with a separating surface.  相似文献   

8.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

9.
Sm2Si3O3N4 and Ln2Si2.5Al0.5O3.5N3.5 (Ln = Ce, Pr, Nd, Sm, Gd) – A Novel Synthetic Approach for the Preparation of N‐containing Melilites and X‐Ray Single‐Crystal Structure Determination The high‐temperature synthesis of nitridosilicates using an especially developed rf furnace was now transferred to the preparation of single‐crystalline oxonitridosilicates and oxonitridoaluminosilicates (sialons). Sm2Si3O3N4 was obtained by the reaction of SrCO3, Si(NH)2, and the respective lanthanoides, for Ln2Si2.5Al0.5O3.5N3.5 (Ln = Ce, Pr, Nd, Sm, Gd) additionally AlN was used. The compounds were obtained as coarsely crystalline products. Their crystal structures were refined on the basis of single‐crystal X‐ray diffraction data. Sm2Si3O3N4 (a = 768.89(4), c = 499.60(4) pm) and the isotypic sialons Ce2Si2.5Al0.5O3.5N3.5 (a = 779.20(3), c = 506.94(4) pm), Pr2Si2.5Al0.5O3.5N3.5 (a = 778.26(4), c = 508.56(5) pm), Nd2Si2.5Al0.5O3.5N3.5 (a = 776.15(4), c = 506.7(3) pm), Sm2Si2.5Al0.5O3.5N3.5 (a = 772.63(13), c = 502.80(9) pm), and Gd2Si2.5Al0.5O3.5N3.5 (a = 774.15(5), c = 506.46(4) pm) are new representatives of the N‐containing melilite structure type (space group P 4 21m (no. 113), Z = 2). For the structure analysis specific models were applied, which have been developed by Werner et al. on the basis of powder diffraction data.  相似文献   

10.
Nd3Si5AlON10 – Synthesis, Crystal Structure, and Properties of a Sialon Isotypic with La3Si6N11 Nd3Si5AlON10 was synthesized by the reaction of silicon diimide, aluminium nitride, aluminium oxide, and neodymium in a pure nitrogen atmosphere at 1650 °C using a radiofrequency furnace. The compound was obtained as a coarsely crystalline solid. According to the single‐crystal structure determination the title compound is isotypic with Ln3Si6N11 (Ln = La, Ce, Pr, Nd, Sm). Nd3Si5AlON10 (P4bm, a = 1007.8(1), c = 486.3(1) pm, Z = 2, R1 = 0.016, wR2 = 0.031) is built up by a three‐dimensional network structure of corner sharing SiON3 and (Si/Al)N4 tetrahedra (molar ratio Si : Al = 3 : 1). According to lattice energetic calculations using the MAPLE concept a differentiation of O and N seems to be reasonable. One of the two different sites for the tetrahedral centres is probably occupied by Si (distances: Si–O: 168.4(1), Si–N: 173.6(3)–176.0(4) pm) the second site by Si and Al with the molar ratio 3 : 1 (distances: (Si/Al)–N: 172.0(3)–176.6(2) pm). The Nd3+ ions are located in the voids of the (Si5AlON10)9– framework (distances: Nd–O: 261.07(8), Nd–N: 246.1(2)–286.6(2) pm).  相似文献   

11.
Ba[Be2N2] was prepared as a yellow‐green microcrystalline powder by reaction of Ba2N with Be3N2 under nitrogen atmosphere. The crystal structure Rietfeld refinements (space group I4/mcm, a = 566.46(5) pm, c = 839.42(9) pm, Rint = 4.73 %, Rprof = 9.16 %) reveal the compound to crystallize as an isotype of the nitridoberyllates A[Be2N2] (A = Ca, Sr) consisting of planar 4.82 nets of mutually trigonal planar coordinated Be and N species. Averaged magnetic susceptibility values for the anion [(Be2N2)2?] determined from measurements on A[Be2N2] with A = Mg, Ca, Ba allow to derive a diamagnetic increment for N3? χdia = (?13±1stat.) · 10?6emu mol?1. Colorless Ba3[Be5O8] was first obtained as an oxidation product of Ba[Be2N2] in air. The crystal structure was solved and refined from single crystal X‐ray diffaction data (space group Pnma, a = 942.9(1) pm, b = 1163.47(7) pm, c = 742.1(1) pm, R1 = 2.99 %, wR2 = 7.15 %) and contains infinite rods of Be in trigonal planar, tetrahedral and 3 + 1 coordination by O. The crystal structure is discussed in context with other known oxoberyllates. Electronic structure calculations and electron localization function diagrams for both compounds support the classification as nitrido‐ and oxoberyllate, respectively.  相似文献   

12.
Sm4S3[Si2O7] and NaSm9S2[SiO4]6: Two Sulfide Silicates with Trivalent Samarium The sulfide silicates Sm4S3[Si2O7] and NaSm9S2[SiO4]6 are obtained as light yellow transparent crystals by the reaction of Sm, Sm2O3, S, and SiO2 with fluxing SmCl3 or NaCl, respectively, in suitable molar ratios in fused evacuated silica tubes (850 °C, 7 d). Tetragonal crystals of Sm4S3[Si2O7] (I41/amd; Z = 8; a = 1186.4(1); c = 1387.0(2) pm) with ecliptically conformed [Si2O7]6–‐groups of corner sharing [SiO4]‐tetrahedra are formed. These double tetrahedra as well the sulfide anions (S2–) coordinate two crystallographically independent metal cations. They provide coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) for Sm1 and 9 (3 S2– and 6 O2–) for Sm2. NaSm9S2[SiO4]6 crystallizes hexagonally (P63/m; Z = 1; a = 975.32(9); c = 676.46(7) pm) in a modified bromapatite‐type structure. The coordination spheres about the two crystallographically different Sm3+ cations are built up by oxygen atoms of the orthosilicate units ([SiO4]4–) and sulfide anions (S2–). As a result, Sm1 and Sm2 have coordination numbers of 9 and 8, respectively. Na+ and (Sm1)3+ occupy the position 4 f in a molar ratio of 1 : 3 whereas the lower coordinated (Sm2)3+ occupies the 6 h position.  相似文献   

13.
The new layered oxonitridosilicate EuSi2O2N2 has been synthesized in a radio‐frequency furnace at temperatures of about 1400 °C starting from europium(III ) oxide (Eu2O3) and silicon diimide (Si(NH)2). The structure of the yellow material has been determined by single‐crystal X‐ray diffraction analysis (space group P1 (no. 1), a=709.5(1), b=724.6(1), c=725.6(1) pm, α=88.69(2), β=84.77(2), γ=75.84(2)°,V=360.19(9)×106 pm3, Z=4, R1=0.0631, 4551 independent reflections, 175 parameters). Its anionic Si2O2N22? layers consist of corner‐sharing SiON3 tetrahedra with threefold connecting nitrogen and terminal oxygen atoms. High‐resolution transmission electron micrographs indicate both ordered and disordered crystallites as well as twinning. Magnetic susceptibility measurements of EuSi2O2N2 exhibit Curie–Weiss behavior above 20 K with an effective magnetic moment of 7.80(5) μB Eu?1, indicating divalent europium. Antiferromagnetic ordering is detected at 4.5(2) K. EuSi2O2N2 shows a field‐induced transition with a critical field of 0.50(5) T. The four crystallographically different europium sites cannot be distinguished by 151Eu Mössbauer spectroscopy. The room‐temperature spectrum is fitted by one signal at an isomer shift of δ=?12.3(1) mm s?1 subject to quadrupole splitting of ΔEQ=?2.3(1) mm s?1 and an asymmetry parameter of 0.46(3). Luminescence measurements show a narrow emission band with regard to the four crystallographic europium sites with an emission maximum at λ=575 nm.  相似文献   

14.
The nitridosilicate chloride Ba1.63La7.39Si11N23Cl0.42:Ce3+ was synthesized by metathesis reaction starting from LaCl3, BaH2, CeF3 and the product of the ammonolysis of Si2Cl6. The title compound is stable towards air and moisture. Diffraction data of a microcrystal were recorded using microfocused synchrotron radiation. X‐ray spectroscopy confirms the chemical composition of the crystal. IR spectra corroborate absence of N–H bonds. The compound is homeotypic to Ba2Nd7Si11N23 and crystallizes in space group Cmmm with a = 11.009(3), b = 23.243(8), c = 9.706(4) Å and Z = 4, R1(all) = 0.0174. According to bond valence sum calculations, some crystallographic positions show complete occupancy by Ba or La whereas others contain significant amounts of both elements. In contrast to the structure prototype Ba2Nd7Si11N23, Ba1.63La7.39Si11N23Cl0.42:Ce3+ contains chloride ions in channels of the SiN4 tetrahedra network, hinting at various substitution possibilities of the complex zeolite‐like structure.  相似文献   

15.
Synthesis, Crystal Structure and Solid‐State NMR Spectroscopic Investigation of the Oxonitridosilicate BaSi6N8O The phase‐pure oxonitridosilicate BaSi6N8O has been synthesized starting from BaCO3 and silicon diimide Si(NH)2 in a radiofrequency furnace at temperatures below 1630 °C as a coarsely crystalline colorless material. The structure has been determined by single‐crystal X‐ray diffraction analysis (BaSi6N8O, space group Imm2 (no. 44), a = 810.5(2), b = 967.8(2), c = 483.7(1) pm, V = 379.4(2)·106 pm3, Z = 2, R1 = 0.014, 618 independent reflections, 44 parameters). The oxonitridosilicate comprises a three‐dimensional network structure of corner sharing SiN4 and SiON3 tetrahedra with Ba2+ located in the resulting voids. BaSi6N8O is isostructural with the oxonitridoalumosilicate (sialon) Sr2AlxSi12?xN16?xO2+x (x ≈ 2) that previously has been described in the literature. Furthermore, the anionic network of BaSi6N8O derives from that of the homeotypic reduced nitridosilicate SrSi6N8 by a topotactic insertion of oxygen into the Si–Si single bonds. In the 29Si MAS‐NMR spectrum two sharp isotropic signals have been observed at ?54.0 and ?56.3 ppm, respectively. With respect to their observed intensity ratio of 1 : 2.1(1) these two signals have to be attributed to the central atoms of SiON3 and SiN4 tetrahedra, respectively, which is in accordance with the X‐ray crystal structure determination (Si at Wyckoff positions 4d (SiON3) and 8e (SiN4)).  相似文献   

16.
Two Chloride Silicates of Yttrium: Y3Cl[SiO4]2 and Y6Cl10[Si4O12] The chloride‐poor yttrium(III) chloride silicate Y3Cl[SiO4]2 crystallizes orthorhombically (a = 685.84(4), b = 1775.23(14), c = 618.65(4) pm; Z = 4) in space group Pnma. Single crystals are obtained by the reaction of Y2O3, YCl3 and SiO2 in the stoichiometric ratio 4 : 1 : 6 with ten times the molar amount of YCl3 as flux in evacuated silica tubes (7 d, 1000 °C) as colorless, strongly light‐reflecting platelets, insensitive to air and water. The crystal structure contains isolated orthosilicate units [SiO4]4– and comprises cationic layers {(Y2)Cl}2+ which are alternatingly piled parallel (010) with anionic double layers {(Y1)2[SiO4]2}2–. Both crystallographic different Y3+ cations exhibit coordination numbers of eight. Y1 is surrounded by one Cl and 7 O2– anions as a distorted trigonal dodecahedron, whereas the coordination polyhedra around Y2 show the shape of bicapped trigonal prisms consisting of 2 Cl and 6 O2– anions. The chloride‐rich chloride silicate Y6Cl10[Si4O12] crystallizes monoclinically (a = 1061,46(8), b = 1030,91(6), c = 1156,15(9) pm, β = 103,279(8)°; Z = 2) in space group C2/m. By the reaction of Y2O3, YCl3 and SiO2 in 2 : 5 : 6‐molar ratio with the double amount of YCl3 as flux in evacuated silica tubes (7 d, 850 °C), colorless, air‐ and water‐resistant, brittle single crystals emerge as pseudo‐octagonal columns. Here also a layered structure parallel (001) with distinguished cationic double‐layers {(Y2)5Cl9}6+ and anionic layers {(Y1)Cl[Si4O12]}6– is present. The latter ones contain discrete cyclo‐tetrasilicate units [Si4O12]8– of four cyclically corner‐linked [SiO4] tetrahedra in all‐ecliptical arrangement. The coordination sphere around (Y1)3+ (CN = 8) has the shape of a slightly distorted hexagonal bipyramid comprising 2 Cl and 6 O2– anions. The 5 Cl and 2 O2– anions building the coordination polyhedra around (Y2)3+ (CN = 7) form a strongly distorted pentagonal bipyramid.  相似文献   

17.
18.
Preparation and Crystal Structures of the first Alkalimetall‐hexacarbonato‐oxotetraberyllates: K6[Be4O(CO3)6] · 7 H2O and K6[Be4O(CO3)6] K6[Be4O(CO3)6] · 7 H2O has been prepared by dissolving freshly precipitated Be(OH)2 in an aqueous KHCO3 solution. After enriching the title compound by extraction with ethanol the heptahydrate crystallizes from the organic phase (triklin, P1¯ (No. 2) with a = 951, 01(11), b = 958, 45(12), c = 1601, 7(2) pm, α = 79, 253(13)°, β = 78, 943(12)°, γ = 65, 119(12)°, VEZ = 1290, 6(3)·106 pm3, Z = 2). Thermal decomposition forms rhombohedral crystals of the anhydrous compound (trigonal‐rhombohedric, R3¯ (No. 148) with a = 1416, 42(6), c = 1704, 5(1) pm, VEZ = 2961, 4(3)·106 pm3, Z = 6).  相似文献   

19.
Three new Zn‐phosphonates based on 5‐phosphonoisophthalic acid, (HO2C)2C6H3PO3H2 (H4L), [Zn2(H2O)(O2C)2C6H3PO3] · H2O ( 1 ), Zn2(H2O)2(O2C)2C6H3PO3 ( 2 ), and KZn[H(O2C)2C6H3PO3] ( 3 ) have been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction ( 1 : triclinic, , a = 742.49(3) pm, b = 846.37(4) pm, c = 992.84(4) pm, α = 80.936(2)°, β = 81.574(2)°, γ = 73.139(3)°, V = 586.28(4) · 106 pm3, R1 = 0.0583, wR2 = 0.1347 (for I > 2σ(I)); 2 : monoclinic, P21/m, a = 464.78(9) pm, b = 1329.2(3) pm, c = 974.5(3) pm, β = 95.80(3)°, V = 599.0(2) · 106 pm3, R1 = 0.0395, wR2 = 0.1086 (for I > 2σ(I)); 3 : monoclinic, P21/c, a = 501.9(1) pm, b = 2489.9(5) pm, c = 946.2(5) pm, β = 105.38(3)°, V = 1140.0(7) · 106 pm3, R1 = 0.0365, wR2 = 0.0848 (for I > 2σ(I))). The title compounds 1 and 2 have the same chemical composition but exhibit different structures and are therefore polymorphs. Thus, in compound 1 , isolated ZnO4‐tetrahedra, and in 2 , infinite double‐chains of corner‐sharing ZnO6 polyhedra are observed. In, KZn[H(O2C)2C6H3PO3] ( 3 ) K+‐ions have been incorporated into the structure leading to the formation of a bimetallic inorganic‐organic hybrid compound.  相似文献   

20.
Hydrothermal investigations in the system MgO/B2O3/P2O5(/H2O) yielded two new magnesium borophosphates, Mg2(H2O)[BP3O9(OH)4] and Mg(H2O)2[B2P2O8(OH)2]·H2O. The crystal structures were solved by means of single crystal X‐ray diffraction. While the acentric crystal structure of Mg2(H2O)[BP3O9(OH)4] (orthorhombic, P212121 (No. 19), a = 709.44(5) pm, b = 859.70(4) pm, c = 1635.1(1) pm, V = 997.3(3) × 106 pm3, Z = 4) contains 1D infinite chains of magnesium coordination octahedra interconnected by a borophosphate tetramer, Mg(H2O)2[B2P2O8(OH)2]·H2O (monoclinic, P21/c (No. 14), a = 776.04(5) pm, b = 1464.26(9) pm, c = 824.10(4) pm, β = 90.25(1)°, V = 936.44(9) × 106 pm3,Z = 4) represents the first layered borophosphate with 63 net topology. The structures are discussed and classified in terms of structural systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号