首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the title compound {alternative name: poly­[silver(I)‐μ‐(3‐­amino‐2‐chloro­pyridine)‐μ‐nitr­ato]}, [Ag(NO3)(C5H5ClN2)]n the AgI atom is in an irregular AgN2O3 geometry, surrounded by one pyridyl N atom [Ag—N 2.283 (5) Å], one amine N atom [Ag—N 2.364 (6) Å] and three O atoms from different nitrate ions [Ag—O 2.510 (6)–2.707 (6) Å]. The Ag ions are bridged by the 3‐amino‐2‐chloro­pyridine ligands into helical chains. Adjacent uniform chiral chains are further interlinked through the NO3 bridges into an interesting two‐dimensional coordination network in the solid.  相似文献   

2.
Synthesis, Vibrational Spectra, and Crystal Structures of the Nitrato Argentates (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN and (Ph4P)[Ag2(NO3)3] Tetraphenylphosphonium bromide reacts in acetonitril suspension with excess silver nitrate to give (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN ( 1 ), whereas (Ph4P)[Ag2(NO3)3] ( 2 ) is obtained in a long‐time reaction from (Ph4P)Br and excess AgNO3 in dichloromethane suspension. Both complexes were characterized by vibrational spectroscopy (IR, Raman) and by single crystal structure determinations. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1781.5(3), b = 724.8(1), c = 2224.2(3) pm, β = 96.83(1)°, R1 = 0.0348. 1 contains isolated complex units [Ag(NO3)2(CH3CN)]?, in which the silver atom is coordinated by the chelating nitrate groups and by the nitrogen atom of the solvated CH3CN molecule with a short Ag—N distance of 220.7(4) pm. 2 : Space group I2, Z = 4, lattice dimensions at 193 K: a = 1753.4(4), b = 701.7(1), c = 2105.5(4) pm, R1 = 0.072. In the polymeric anions [Ag2(NO3)3]? each silver atom is coordinated in a chelating manner by one nitrate group and by two oxygen atoms of two bridging nitrate ions. In addition, each silver atom forms a weak π‐bonding contact with a phenyl group of the (Ph4P)+ ions with shortest Ag···C separations of 266 and 299 pm, respectively, indicating a (4+1) coordination of silver atoms.  相似文献   

3.
Colourless needles of mercurous dimethylglyoximato nitrate, Hg2(Dmg)2(NO3)2, grow from a diluted nitric acid solution of mercurous nitrate and dimethylglyoxime. The crystal structure (triclinic, P1¯, a = 728.50(13), b = 1066.8(2), c = 1167.9(2) pm, α = 93.78(2)°, β = 94.16(2)°, γ = 98.61(2)°, Rall = 0, 0726) contains the cations [Hg2(Dmg)2]2+ and “non‐coordinating” (NO3) anions. In the cation, two neutral dimethylglyoxime molecules coordinate bidentately with Hg—N distances in the narrow range of 236 to 239 pm to the mercurous ion, Hg22+, which exhibits a Hg—Hg bond distance of 252.23(8) pm).  相似文献   

4.
The syntheses, characterizations and in vitro cytotoxities of seven soluble silver (I) compounds (1–7) with 2,2′‐bipyridine (bpy), 5,5′‐dimethyl‐2,2′‐bipyridine (dmbpy) and 1, 10‐phenanthroline (phen) are described. Two of the complexes, [Ag(dmbpy)(NO3)] (1) and [Ag(dmbpy)]ClO4(2), have been structurally established by single‐crystal X‐ray diffraction, which reveals the silver(I) atom in compound 1 is in a Y‐shape coordination geometry with two N atoms (av. Ag? N = 227.8 pm) from a chelate dmbpy ligand and an O atom (Ag? O=221.8(4) pm) from a monodentate nitrate. The Ag(I) atom in compound 2 is three‐coordinated by three N atoms, two of which are from a chelate dmbpy, and one from an acetonitrile ligand. The seven compounds showed strong cytotoxities in vitro to both normal and carcinoma cells.  相似文献   

5.
Colourless single crystals of [Hg(OH)](NO3)(H2O) were obtained by slow evaporation of an aqueous solution of Hg(NO3)2 and Bi(NO3)3. The crystal structure (orthorhombic, Pbca, Z = 8, a = 943.2(2), b = 697.6(1), c = 1349.0(2) pm, R1(all) = 0.0780) contains [Hg(OH)] = …OH–Hg–OH–Hg… zig zag chains (O–Hg–O angle: 168°, Hg–O–Hg angle: 112°, Hg–OH distance: 212 pm) to which one water molecule is attached loosely. The [Hg(OH)](H2O) chains are connected via bis‐monodentate‐bridging nitrate ions to corrugated layers that are stacked in the [001] direction. Hg2+ has an effective 2+2+2(+1) coordination.  相似文献   

6.
The title compounds, bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}bis[(nitrato‐κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine (DPP) ligands linking two Ag+ cations in a head‐to‐tail fashion. In (1), the unique Ag+ cation has a near‐linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak interactions to form a chain extending in the c direction. The half‐occupancy acetonitrile molecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetrahedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] molecule acts as a four‐node to bridge four adjacent equivalent molecules through N—H...O interactions, forming a two‐dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = , , etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, , 1, etc. These two different supramolecular structures result from the different geometric conformations of the templating anions which direct the self‐assembly of the cations and anions.  相似文献   

7.
Polycrystalline anhydrous Hg2(NO3)2 was prepared by drying Hg2(NO3)2·2H2O over concentrated sulphuric acid. Evaporation of a concentrated and slightly acidified mercury(I) nitrate solution to which the same volumetric amount of pyridine was added, led to the growth of colourless rod‐like single crystals of Hg2(NO3)2. Besides the title compound, crystals of hydrous Hg2(NO3)2·2H2O and the basic (Hg2)2(OH)(NO3)3 were formed as by‐products after a crystallization period of about 2 to 4 days at room temperature. The crystal structure was determined from two single crystal diffractometer data sets collected at —100°C and at room temperature: space group P21, Z = 4, —100°C [room temperature]: a = 6.2051(10) [6.2038(7)]Å, b = 8.3444(14) [8.3875(10)]Å, c = 11.7028(1) [11.7620(14)]Å, ß = 93.564(3) [93.415(2)]°, 3018 [3202] structure factors, 182 [182] parameters, R[2 > 2σ(2)] = 0.0266 [0.0313]. The structure is built up of two crystallographically inequivalent Hg22+ dumbbells and four NO3 groups which form molecular [O2N‐O‐Hg‐Hg‐O‐NO2] units with short Hg‐O bonds. Via long Hg‐O bonds to adjacent nitrate groups the crystal packing is achieved. The Hg‐Hg distances with an average of d(Hg‐Hg) = 2.5072Å are in the typical range for mercurous oxo compounds. The oxygen coordination around the mercury dumbbells is asymmetric with four and six oxygen atoms as ligands for the two mercury atoms of each dumbbell. The nitrate groups deviate slightly from the geometry of an equilateral triangle with an average distance of d(N‐O) = 1.255Å.  相似文献   

8.
In the molecule of the title compound, [Cu(NO3)2(C6H6ClN)2], the Cu atom lies on an inversion centre and is six‐coordinated by two pyridine N atoms and four nitrate O atoms in trans positions. The nitrate acts as an unsymmetrical bidentate ligand. The coordination geometry is octahedral, with the Cu—N and the two Cu—O distances being 1.9939 (16), 2.0246 (16) and 2.4866 (19) Å, respectively. There are five types of C—H⋯O hydrogen bonds. Two of these generate two‐dimensional molecular networks in the direction of the a axis, and the others connect adjacent molecular networks.  相似文献   

9.
Molecular and Crystal Structure of Ytterbium(III)-triaqua-trinitrate, Yb(H2O)3(NO3)3 Yb(H2O)3(NO3)3 crystallizes from a concentrated solution of Yb2O3 in nitric acid in a vacuum desiccator at ambient temperature as colourless single crystals. The crystal structure was determined from single crystal four-circle diffractometer data (R3 , Z = 6, a = 1175.5(1), c = 1117.7(2) pm, Vm = 134.25 cm3/mol, R = 3.0%, Rw = 2.9%). The structure may be viewed at as a heavily compressed packing of [Yb(H2O)3(NO3)3] molecules. Yb3+ is coordinated by three bidentate nitrate ligands and three water molecules so that a tricapped trigonal prism (C.N. 9) of oxygen atoms results as the coordination polyhedron.  相似文献   

10.
Colourless single crystals of the caffeine adduct of mercurous perchlorate dihydrate, [Hg2(Caf)2](ClO4)2(H2O)2, were grown from aqueous solutions of mercurous perchlorate and caffeine by isothermal evaporation at ambient temperature. The crystal structure (monoclinic, P21/n, Z = 4, a = 1628.0(2), b = 780.4(1), c = 2229.6(3) pm, β = 99.84(1)°, R1(all data) = 0.0894) contains [trans‐Caf‐Hg‐Hg‐Caf]2+ cations with a Hg‐Hg distance of 250.88(6) pm, Hg‐N (bond) distances of 214.4(6) and 215.1(6) pm and Hg‐Hg‐N angles of 176.9(2) and 165.1(2)°, respectively. These cations are attached via weak Hg‐O contacts to dimers which are further arranged to leave large channels into which one crystal water molecule is included. The second water molecule and the two perchlorate anions are weakly attracted to one Hg atom.  相似文献   

11.
Colourless single crystals of the co‐crystallizate of mercuric chloride and caffeine, HgCl2(Caf), were obtained from an ethanolic solution of mercuric chloride, HgCl2, and caffeine (Caf) and recrystallized from hot water. The crystal structure (monoclinic, P21, Z = 2, a = 398.36(8), b = 1964.5(4), c = 809.6(2) pm, β = 99.24(3)°, Z = 2, R1 = 0.0584 for 1430 Fo > 4σ(Fo)) contains helical chains (parallel to the 21 screw axis) of almost unaffected HgCl2 molecules and caffeine molecules which are very weakly bound to one keto‐oxygen atom (O4) of one and N9 of a second caffeine molecule at distances of 282 and 281 pm, respectively. To the contrary, theoretical calculations show that the molecule HgCl2(Caf)2 is stable (in the gas phase at T = 0 K) with surprisingly strong bonding as indicated by the “tetrahedrization” of the molecule.  相似文献   

12.
Ag/CuI Mixed Occupancy in the Crystal Structures of the Copper(II) Cyanoargentates Cu(NH3)(py)Ag3?xCux(CN)5 · py From pyridine and ammonia containing CuII solutions, to which K[Ag(CN)2] and in part KCu(CN)2/KCN has been added, we obtained single crystals of mixed-valent copper compounds of variable composition Cu(NH3)-(py)Ag3-xCux(CN)5 · py. The phases corresponding to x = 0.39(1) ( I ) and to x = 1.243(6) ( II ) were characterized by X-ray structure analysis. They are isomorphous and crystallize with Z = 4 in the monoclinic space group P21/c. The lattice constants for I [and II , resp.] are: a = 923.8(2) [901.4(2)], b = 1226.8(2) [1227.3(2)], c = 1809.8(4) [1783.5(2)] pm, β = 91.41(3) [91.02(1)]°. The CuII cation shows trigonal bipyramidal [CuN5] coordination, with the neutral ligands in axial positions (mean value Cu? N for II : 201 pm), three N atoms of cyano bridges in equatorial ones (Cu? N: 206 pm). One of these bridges stems from a trigonal unit [AgCN(NC)2], the central atom of which is substituted by CuI to an extent of 39% in I , and completely in II . The two other bridges originate from two [Ag(CN)2]? groups, of which the more bent one may be partially occupied by CuI as well (24% in II ). The units mentioned are connected into meshes of elongated hexagons and further into puckered layers within the (010) plane, interpenetrating each other in pairs. A threedimensional linking of layers occurs by the trigonal Ag/CuI species forming centrosymmetric dimers, in which the metal coordination is completed to tetrahedral by a C-atom of the corresponding neighbouring group and short metal-metal distances of 279.1(3) pm in I and 264.1(1) pm in II appear. Details and relations are discussed.  相似文献   

13.
Single crystals of mercuric bis(N‐imino‐methyl‐formamidate), Hg(Imf)2, were obtained from aqueous solutions of 1,2,4‐triazole and Hg(NO3)2·2H2O. The crystal structure [monoclinic, P21/c (no. 14), a = 499.6(2), b = 1051.2(4), c = 711.1(3) pm, β = 117.55(1)°, Z = 2, R1 for 890 reflections with I0>2σ(I0): 0.0369] contains linear centrosymmetric Hg(Imf)2 molecules with Hg–N distances of only 203.5(7) pm. Two plus two intra‐ and intermolecular nitrogen atoms add to an effective coordination number of 6.  相似文献   

14.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

15.
The reaction of 4‐Amino‐6‐methyl‐1, 2, 4‐triazine‐3(2H)‐thione‐5‐one (AMTTO, 1 ) with silver nitrate in methanol led to the dimeric complex {[(AMTTO)2Ag]NO3}2 ( 2 ). 2 was characterized by elemental analyses and IR spectroscopy as well as by X‐ray structure analysis. Crystal data for 2 at ?80 °C: crystal system orthorhombic, space group P212121 with a = 1043.6(1), b = 1329.6(1), c = 2358.4(1) pm, Z = 8 and R1 = 0.037. The cation possesses a highly distorted linear coordination sphere in the solid state.  相似文献   

16.
The self‐assembly of 4 ‐ MTPP [ 4 ‐ MTPP = 2‐(methylthio)‐4‐(pyridin‐4‐yl)pyrimidine] with Cu(NO3)2 and AgNO3 was structurally investigated. For Cu(NO3)2, a discrete mononuclear CuII coordination compound, [Cu( 4 ‐ MTPP )2(NO3)2] ( 1 ), resulted that is exclusively based on Cu–N coordination. For AgNO3, a unique one‐dimensional double‐chain structure ( 2 ) was obtained with the Ag–N distances varying from 2.181(9) to 2.223(9) Å, and the average Ag–S distance being 2.98 Å. Compared to zero‐dimensional 1 , the extension to one‐dimensional 2 is considered to result from the specific affinity between Ag+ and the ligand 4 ‐ MTPP that is attributed to the strong coordinating tendency of silver for aromatic nitrogen and thioether sulfur atoms.  相似文献   

17.
2‐(2‐Amino­eth­yl)pyridine (2‐aep, C7H10N2) acts as a bridging ligand in bis­[μ‐2‐(2‐amino­eth­yl)pyridine‐κ2N:N′]disilver(I) dinitrate, [Ag2(2‐aep)2](NO3)2, and bis­[μ‐2‐(2‐amino­eth­yl)­pyridine‐κ2N:N′]disilver(I) diperchlorate, [Ag2(2‐aep)2](ClO4)2. Both salts contain the dinuclear [Ag2(2‐aep)2]2+ cation, which possesses a crystallographic inversion center. The Ag⋯Ag distance is 3.1163 (5) Å for the nitrate and 3.0923 (3) Å for the perchlorate salt, and may indicate a weak d10d10 inter­action in each case. Essentially linear coordination of the AgI atom is perturbed by weak coordination to the anionic O atoms. These latter inter­actions organize the dinuclear cations into one‐dimensional polymeric chains in the crystals of the two salts.  相似文献   

18.
Colourless crystals of [Hg2(Mmt)(Dmt)2](NO3)(H2O) were obtained from a reaction of mercuric nitrate with monomethyl‐ and dimethyl‐1,2,4‐triazolate (Mmt? and Dmt?, respectively). In the crystal structure (monoclinic, C2/c (no. 15), a = 2579.4(4), b = 1231.1(2), c = 1634.8(2) pm, β = 128.32(1)°, V = 4073.3(11)·106·pm3, Z = 8, R1 [I0 > 2σ(I0)]: 0.0355), half of the mercuric ions are essentially two‐coordinate (Hg–N: 210‐215 pm), the other half are tetrahedrally surrounded by N‐donor atoms (Hg–N: 221, 225 pm) of the Mmt? and Dmt? anions. These three‐N ligands construct a three‐dimensional framework.  相似文献   

19.
合成并通过单晶衍射、元素分析及红外光谱表征了配合物[Ag2(HL)(NO32]n1)的结构(HL为3-乙基-2-乙酰吡嗪缩4-苯基氨基脲)。单晶衍射结果表明,配合物1中,HL作为中性四齿配体连接2个Ag(I)中心,其中一个Ag(I)中心与HL配体中的ON2供体(羰基O,亚胺N和吡嗪N1原子)和2个单齿硝酸根配位,构成扭曲的四方锥配位构型;而另一个Ag(I)离子与1个单齿硝酸根,1个双齿硝酸根和HL配体中的吡嗪N4原子配位,形成扭曲平面正方形配位构型。另外,相邻的Ag(I)离子通过桥联的硝酸根离子相互连接形成二维层状结构;此外,配合物1与DNA的相互作用强于配体。  相似文献   

20.
Polysulfonyl Amines. XLI. A Silver(I) Hydrate with an Unusual Composition: Characterization of Tetrakis(dimesylamido)aquatetrasilver(I) [Ag4(N)SO2CH3)2}4(H2O)] by X-Ray Diffraction and Thermal Analysis The title compound is obtained by crystallizing AgN(SO2CH3)2 from water at room temperature. Crystallographic data (at ?95°C): Triclinic space group P1 , a = 864.6(4), b = 1 211.2(5), c = 1 399.1(5) pm, α = 90.97(3), β = 90.90(3), γ = 98.25(4)°, V = 1.4496 nm3, Z = 2, Dx = 2.608 Mg m?3. The four independent silver atoms and the water molecule form zigzag chains Ag(1)-Ag(2)-(μ-H2O)-Ag(3) …? Ag(4) …? Ag(1′) with distances Ag(1)-Ag(2) 309.7, Ag(2)-O(w) 241.8, O(w)-Ag(3) 241.4, Ag(3) …? Ag(4) 342.9, Ag(4) …? Ag(1′) 361.4 pm. The catenated silver atoms are further connected by the dimesylamide anions acting as tridentate bridging (α-O, N, ω-O)-ligands. The resulting strands are interconnected into layers through one O(S)-Ag′ contact (247 pm) and one hydrogen bond O(w)-H(l) …? O′(S) per repeating unit. Between the layers, a weak O(S) …? Ag″ interaction (271 ptn) and a hydrogen bond O(w)-H(2) …? O(S) per repeating unit are observed. The silver atoms Ag(l) to Ag(4) display the coordination numbers 5 [NO,Ag(2), distorted trigonal bipyramid], 5[NO2,O(w)Ag(I), distorted trigonal bipyramid], 5[O4,O(w), trigonal bipyramid], and 2 + 1 (N2, li-near; plus a secondary Ag …? 0 contact). The dehydration of the title compound and a solid-solid phase transformation in anhydrous AgN(SO2CH3)2, were quantitatively investigated by thermoconductometry and time- and temperature-resolved X-ray diffractometry (TXRD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号