首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The crystal and electronic structures of ordered half antiperovskites A2Rh3S2 = ARh3/2S (A = In, Sn, Tl, Pb, Bi) are investigated. From powder and single crystal data superstructures, rhodium site ordering, trends in bonding and coordination are analysed with respect to the A site atom. Comparisons address isotypic and isoelectronic relations to monoclinic parkerite (Bi2Ni3S2) type superconductors, the trigonal half‐metal ferromagnet Sn2Co3S2, and rhodium‐containing antiperovskites. Local structure and bonding is analysed with respect to the ordered occupation of half of S2A4 sites (= perovskite oxygen sites) and interlinking to 2D networks [Rh3S2]δ by face‐, edge‐ and corner‐sharing. The theoretical part includes DFT band structure and ELF calculations, systematic comparisons to rhodium and antiperovskites, as well as spin‐polarised calculations on Sn2Rh3S2 and Pb2Rh3S2.  相似文献   

3.
In a model study the crystal structures of shandite (Pb2Ni3S2), parkerite (Bi2Ni3S2) and their Pd homologues are investigated in terms of ordered half antiperovskites AM3/2S (A = Pb, Bi; M = Ni, Pd). This addresses fundamental questions on the structural relations, ordering and chemical bonding. From crystal structure investigations a new cubic parkerite variant is presented for Bi2Pd3S2 that fits in an ordering model equivalently to shandite and parkerite. Type–antitype relations to ordered oxygen deficit perovskites are presented. With the relation to the superconductor Ni3MgC a model is deduced that provides the complete crystal structure and symmetry in terms of the Ni and Pd ordering in antiperovskite superstructures. Therein a systematic ab initio investigation on the relative stability of shandite and parkerite structures is carried out for the first time. From the DFT modelling results the preferences of the ordering variants and the distinct differences in the atomic coordination spheres are discussed. The bonding in the systems is investigated by site projected density of states and covalent bond energy calculations.  相似文献   

4.
Ruby‐red crystals of Ag2Bi2S3Cl2 were synthesized from AgCl and Bi2S3 by cooling a melt from 770 K to room temperature. X‐ray diffraction on powders and single‐crystals revealed a triclinic crystal structure with special lattice constants (P &1macr; (No. 2), a = 1085.0(2), b = 717.2(1), c = 1137.6(1) pm, α = 89.80(1)?, β = 74.80(1)?, γ = 87.81(1)?). In the structure [BiIIIS3Cl4] polyhedra form 2[BiS3/2Cl4/4] double‐layers by sharing common faces and edges. The silver(I) cations between the layers are coordinated either octahedrally by sulfide ions or tetrahedrally by sulfide and chloride ions. The deviations from the monoclinic space group P 1 21/c 1 are small and induce twinning along [010]. Further pseudosymmetry is based on the stacking of layer packages with the symmetry of the layer group P (2/c) 21/c 2/b.  相似文献   

5.
Synthesis and Crystal Structure of Bi2ErO4I Bi2ErO4I was prepared by solid‐state reaction of stoichiometric mixture of BiOI, Bi2O3 and Er2O3. Bi2ErO4I is a new compound and the first bismuth rare earth oxide iodide. The crystal structure was determined by the Rietveldmethod (P4/mmm, a = 3,8896(6) Å, c = 9,554(2) Å, Z = 1). In this structure [M3O4]+‐layers are interleaved by single I‐layers. Er and Bi atoms of Bi2ErO4I are 8‐coordinated. The structure can be derived from the LiBi3O4Cl2‐structure type.  相似文献   

6.
Transition metal complexes of arginine (using Co(II), Ni(II), Cu(II) and Zn(II) cations separately) were synthesized and characterized by FTIR, TG/DTA‐DrTG, UV‐Vis spectroscopy and elemental analysis methods. Cu(II)‐Arg complex crystals was found suitable for x‐ray diffraction studies. It was contained, one mole CuII and Na+ ions, two arginate ligands, one coordinated aqua ligand and one solvent NO3? group in the asymmetric unit. The principle coordination sites of metal atom have been occupied by two N atoms of arginate ligands, two carboxylate O atoms, while the apical site was occupied by one O atom for CuII cation and two O atoms for CoII, NiII, ZnII atoms of aqua ligands. Although CuII ion adopts a square pyramidal geometry of the structure. CoII, NiII, ZnII cations have octahedral due to coordination number of these metals. Neighbouring chains were linked together to form a three‐dimensional network via hydrogen‐bonding between coordinated water molecule, amino atoms and O atoms of the bridging carboxylate groups. CuII complex was crystallized in the monoclinic space group P21, a = 8.4407(5) Å, b = 12.0976(5) Å, c = 10.2448(6) Å, V = 1041.03(10) Å3, Z = 2. Structures of the other metal complexes were similar to CuII complex, because of their spectroscopic studies have in agreement with each other. Copper complex has shown DNA like helix chain structure. Lastly, anti‐bacterial, anti‐microbial and anti‐fungal biological activities of complexes were investigated.  相似文献   

7.
Synthesis and Structure of a High‐pressure Modification of the Bariumthioplatinate(II), BaPt2S3 BaPt2S3, obtained via the precursor BaPt(CN)4·2H2O, was found to undergo a high‐pressure phase transformation at 10 kbar and 600 °C. The structure of the high‐pressure modification was solved with single crystal data. (Space group P41212, Z = 12, a = 11.058(1) Å, c = 13.125(1) Å). Two planar [PtS4]‐units are linked by one common side forming [Pt2S6]‐groups, which built up a three‐dimensional framework. The barium ions are coordinated by seven sulfur neighbours.  相似文献   

8.
Contributions to the Crystal Chemistry of Uranium Tellurides. II. The Crystal Structure of Diuranium Pentatelluride U2Te5 Via chemical transport reactions with TeBr4 as transporting agent single crystals of the title compound up to a size of 5 mm were available from the elements. The analysis by atomic emission spectrometry gave UTe2.52(4). By X-ray single crystal structure analysis we found that U2Te5 crystallizes monoclinic (space group C2/m, Z = 4) with a = 3443.3(5) pm, b = 418.65(3) pm, c = 607.97(6) pm and β = 95.35(1)º in a new structure type. The layer structure is built up by bicapped trigonal prisms, one half as isolated building units, the other connected via faces as fourfold capped biprisms. A structural relationship of diuranium pentatelluride to the adjacent phases in the phase diagram U? Te can be expressed by the formulation as UTe2 · UTe3.  相似文献   

9.
10.
Preparation and Crystal Structure of Rb2Ni3Se4 The compound Rb2Ni3Se4 was synthesized by heating a mixture of rubidium carbonate, nickel and selenium at 850°C in an atmosphere of hydrogen. The compound has a golden lustre and crystallizes with the K2Pd3S4-type structure; a = 10.555(3) Å, b = 27.588(6) Å, c = 6.031(6) Å, Z = 8, Fddd (No. 70). The structure can be described as a stacking of layers of the composition Rb2Ni3Se4 with a stacking sequence abcd. The electrostatic part of lattice energy (MAPLE) will be discussed for compounds of the compositions A2M3X4 (A K, Rb, Cs; M Ni, Pd, Pt and X S, Se).  相似文献   

11.
Synthesis and Crystal Structure of K2Mn3S4 Single crystals of K2Mn3S4 have been prepared by a fusion reaction of potassium carbonate with manganese in a stream of hydrogen sulfide at 900 °C. K2Mn3S4 crystallizes in a new monoclinic layered structure type (P2/c, a = 7.244(2) Å, b = 5.822(1) Å, c = 11.018(5) Å, β = 112.33(3)°, Z = 2) which can be described as a stacking variant of the orthorhombic Cs2Mn3S4 structure type. Measurements of the magnetic susceptibilities show antiferro‐magnetic interactions.  相似文献   

12.
The energy loss near edge structure (ELNES) of the O-K, Ti-L23 and Mn-L23 edges have been recorded in hexagonal Ba3Ti2MnO9 with an energy resolution of 0.10-0.20 eV using a monochromator on a commercial transmission electron microscope (TEM) and compared with a tetragonal BaTiO3 reference sample. The formal valency and symmetry of Mn have been determined using atomic multiplets calculations and its effect on the electronic structure of BaTiO3 has been interpreted through a molecular-orbital model.  相似文献   

13.
Crystal Structure of the Zinc Amide Zn[N(SiMe3)2]2 X‐ray quality crystals of Zn[N(SiMe3)2]2 (monoclinic, P21/c) are obtained by sublimation of the zinc amide Zn[N(SiMe3)2]2 at —30 °C in vacuo (300 torr). According to the result of the X‐ray structural analysis, Zn[N(SiMe3)2]2 contains an almost linear N‐Zn‐N unit with two short N‐Zn bonds.  相似文献   

14.
用第一性原理的FP-LMTO能带计算方法研究了重费米子化合物LiV2O4的电子结构.结果表明:费米面附近的导带是由V原子的3d电子形成的宽度为2.5eV的窄能带,是3d态在立方晶体场中具有t2g对称性的子带;它与O的2p轨道构成的能带有近1.9eV的能隙.计算得出的费米能处电子态密度和线性电子比热系数分别是11.1 states/eV f.u.和26.7 mJ/molK2.费米面处的能带色散具有电子型和空穴型两种,呈现出一种复杂的费米面结构.LSDA以及LDA+GGA计算表明, LiV2O4有一个磁矩为每个钒原子1.13μB,总能比LDA基态低约148 meV/f.u.的铁磁性基态.由目前的能带结构计算的结果无法确定这一类Kondo体系的局域磁矩的来源,表明这一化合物中的重费米子行为可能有别于在含有4f和5f稀土的重费米子合金中观察到的局域磁矩与传导电子的交换作用机制,其中存在量子相变的可能.  相似文献   

15.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXIV. Preparation, Crystal Structure, and Properties of Copper(II) Indium(III) Orthophosphate Cu3In2[PO4]4 Crystals of Cu3In2[PO4]4 were grown by chemical vapour transport (temperature gradient 1273 K → 1173 K) using chlorine as transport agent. The mixed metal phosphate forms a new structure type (P21/c, Z = 2, a = 8.9067(6), b = 8.8271(5), c = 7.8815(5) Å, β = 108.393(5)°, 13 atoms in asymmetric unit, 2549 unique reflections with Fo > 4σ, 116 variables, R(F2) = 0.065). The crystal structure shows a hexagonal closest packing of [PO4]3– tetrahedra. Close‐packed layers parallel (1 0 –1) are stacked according to the sequence A, B, A′, B′, A. The octahedral interstices in this packing are completely occupied by two In3+, one (Cu1)2+ and a “dumb bell” (Cu2)24+. In the latter case four of the six phosphate groups that belong to this octahedral void act as bi‐dentate ligands, thus forming dimers [(Cu2)2O10] with dCu–Cu = 3.032 Å. Cu3In2[PO4]4 is paramagnetic (μeff = 1.89 μB, θP = –16.9 K). The infrared and UV/Vis reflectance spectra are reported. The observed d‐electron levels of the Cu2+ cations agree well with those obtained from angular overlap calculations.  相似文献   

16.
La4N2S3: A New Nitride Sulfide of Lanthanum with Unprecedented Crystal Structure The oxidation of lanthanum powder with sulfur and cesium azide (CsN3) in the presence of lanthanum tribromide (LaBr3) yields lanthanum nitride sulfide with the composition La4N2S3 when appropriate molar ratios of the reactants are used. Additional cesium bromide (CsBr) as a flux secures fast reactions (7 d) at 900 °C in evacuated silica tubes as well as the formation of almost black single crystals. The orthorhombic crystal structure (Pnnm, Z = 2) was determined from single crystal X‐ray diffraction data (a = 641.98(4), b = 1581.42(9), c = 409.87(3) pm). Two crystallographically different La3+ cations are present, La1 resides in sixfold coordination of two N3? and four S2? anions forming a trigonal prism and La2 is coordinated by two N3? and five S2? in the shape of a monocapped trigonal prism. However, the main feature of the crystal structure comprises N3?‐centred (La3+)4 tetrahedra which arrange as pairs [N2La6]12+ of edge‐shared [NLa4]9+ units and which are further connected via four vertices to form double chains . They get bundled along [001] like a hexagonal rod packing and are held together by two crystallographically different S2? anions. Further motifs for the connectivity of [NM4]9+ tetrahedra in crystal structures of nitride chalcogenides and halides of the rare‐earth elements (M = Sc, Y, La; Ce – Lu) with ratios of N : M = 1 : 2 are presented and discussed for comparison.  相似文献   

17.
The Synthesis and Crystal Structure of K2UTe3 Syntheses of K2UTe3 were performed via polytelluride fluxes from K2Te3 and metallic uranium in the molar ratio 2 : 1 at 600 to 800 °C. Well-formed crystals were isolated by washing the reguli with liquid ammonia. One-phase powder samples of K2UTe3 are also available by reactions of stoichiometric mixtures of K2Te3 and uranium. K2Te3 was prepared in liquid ammonia from the elements using a glass apparatus specially designed for the synthesis of alkali metal chalcogenides. By x-ray structure analyses of single crystals we found K2UTe3 to crystallize monoclinic (space group C2/m, Z = 4) with the lattice parameters a = 800.41(3) pm, b = 1387.67(5) pm, c = 851.63(4) pm and β = 108.495(3)°. The crystal structure of the compound may be regarded as a stuffed AlCl3-type structure. The existence of an analogous compound Rb2UTe3 crystallizing isotypically to K2UTe3 has been shown by x-ray powder investigations.  相似文献   

18.
用ab initio分子轨道方法(RHF,UHF)和密度泛函(DFT)方法研究了团簇V2S2+、V3S4+的各种可能的几何构型和电子结构,所得理论计算能较好地解释有关实验结果.  相似文献   

19.
Three metal molybdate hydrates,Fe(H2O)2(MoO4)2·H3O(FeMo),NaCo2(MoO4)2(H3O2)(CoMo)and Mn2(MoO4)3·2H3O(MnMo),were synthesized by the mixed-solvent-thermal methods and characterized by singlecrystal X-ray...  相似文献   

20.
Two new macrocyclic ligands, L1 (14-membered N2O2) and L2 (28-membered N4O4) from [1+1] and [2+2] condensation, respectively, have been obtained in a one-pot synthesis starting from 1,4-bis(2′-formylphenyl)-1,4-dioxabutane and cis-1,2-diaminocyclohexane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号