首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New sulfonated poly(arylene ether sulfone) copolymers with high molecular weights were successfully synthesized with controlled degrees of disulfonation of up to 70 mol % via the direct copolymerization of sulfonated aromatic dihalides, aromatic dihalides, and one of four structurally distinct bisphenols. The disodium salts of the 3,3′‐disulfonated‐4,4′‐dichlorodiphenyl sulfone and 3,3′‐disulfonated‐4,4′‐difluorodiphenyl sulfone comonomers were synthesized via the sulfonation of 4,4′‐dichlorodiphenyl sulfone or 4,4′‐difluorodiphenyl sulfone with 30% fuming sulfuric acid at 110 °C. Four bisphenols (4,4′‐bisphenol A, 4,4′‐bisphenol AF, 4,4′‐biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation. The composition and incorporation of the sulfonated repeat unit into the copolymers were confirmed by 1H NMR and Fourier transform infrared spectroscopy. Solubility tests on the sulfonated copolymers confirmed that no crosslinking and probably no branching occurred during the copolymerizations. Tough, ductile films were solvent‐cast that exhibited increased water absorption with increasing degrees of sulfonation. These copolymers are promising candidates for high temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2264–2276, 2003  相似文献   

2.
The phthalide ring was examined as an activating group for nucleophilic aromatic substitution. The proposed mechanism by which activation occurs is through a ring opening of the phthalide ring to form a Meisenheimer‐like σ complex. 3,3‐Bis(4‐fluorophenyl)phthalide was synthesized and examined under different reaction conditions to determine its suitability for polymer formation. Semiempirical calculations at the PM3 level suggested that 3,3‐bis(4‐fluorophenyl)phthalide is only moderately activated, whereas 1H, 13C, and 19F NMR spectroscopy suggested that the monomer was not sufficiently activated for nucleophilic aromatic substitution. However, low‐molecular‐weight polymers (number‐average molecular weight < 7000 g/mol) were produced from bisphenol A, hydroquinone, and phenolphthalein. The polymers were characterized by gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, NMR spectroscopy, and differential scanning calorimetry. The polymers displayed relatively high glass‐transition temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3046–3054, 2002  相似文献   

3.
1‐[2′‐(Heptaphenylcyclotetrasiloxanyl)ethyl]‐1,3,3,5,5‐pentamethylcyclotetrasiloxane ( II ) was prepared from 1‐[2′‐(methyldichlorosilyl)ethyl]‐1,3,3,5,5,7,7‐heptaphenylcyclotetrasiloxane ( I ) and tetramethyldisiloxane‐1,3‐diol. Acid‐catalyzed ring‐opening of II in the presence of tetramethyldisiloxane gave 1,9‐dihydrido‐5‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( III ) and 1,9‐dihydrido‐3‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( IV ). Both acid‐ and base‐catalyzed ring‐opening polymerization of II gives highly viscous, transparent polymers. The structures of I – IV and polymers were determined by UV, IR, 1H, 13C, and 29Si NMR spectroscopy. In addition, molecular weights obtained by GPC and NMR end group analysis were confirmed with mass spectrometry. On the basis of 29Si NMR spectroscopy, the polymers appear to result exclusively from ring‐opening of the cyclotrisiloxane ring. No evidence for ring‐opening of the cyclotetrasiloxane ring was observed. Polymer properties were determined by DSC and TGA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 137–146, 2006  相似文献   

4.
Liquid‐crystalline (LC) polyesters based on hexanediol or butanediol, dimethyl 4,4′‐biphenyldicarboxylate, and a sugar‐based diol, isosorbide or isomanide, were prepared with conventional melt polymerization. 1H NMR spectroscopy confirmed that 50 mol % of the charged sugar diol was successfully incorporated into various copolyesters. Modest molecular weights were obtained, although they were typically lower than those of polyester analogues that did not contain sugar‐based diols. Thermogravimetric analysis demonstrated that the incorporation of isosorbide or isomanide units did not reduce the thermal stability in a nitrogen atmosphere. Melting points that ranged from 190 to 270 °C were achieved as a function of the copolyester composition. The lined focal conic fan textures, typical indications of a chiral smectic C LC phase, were observed upon the shearing of the LC melt under polarized light microscopy. Atomic force microscopy revealed that the twisted molecular orientation in the chiral LC phase induced periodically soft lamellar structures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2512–2520, 2003  相似文献   

5.
Branched sulfonated poly(ether ketone sulfone)s (Br‐SPEKS) were prepared with bisphenol A, bis(4‐fluorophenyl)sulfone, 3,3′‐disodiumsulfonyl‐4,4′‐difluorobenzophenone, and THPE (1,1,1‐tris‐p‐hydroxyphenylethane), respectively, at 180 °C using potassium carbonate in NMP (N‐methylpyrrolidinone). THPE, as a branching agent, was used with 0.4 mol % of bisphenol A to synthesize branched copolymers. Copolymers containing 10–50 mol % disulfonated units were cast from dimethylsulfoxide solutions to form films. Linear sulfonated poly(ether ketone sulfone)s (SPEKS) were also synthesized without THPE. The films were converted from the salt to acid forms with dilute hydrochloric acid. A series of copolymers were studied by Fourier transform infrared, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion‐exchange capacity (IEC), a measure of proton conductivity, was evaluated. The synthesized Br‐SPEKS and SPEKS membranes exhibit conductivities (25 °C) from 1.04 × 10?3 to 4.32 × 10?3 S/cm, water swell from 20.18 to 62.35%, IEC from 0.24 to 0.83 mequiv/g, and methanol diffusion coefficients from 3.2 × 10?7 to 4.7 × 10?7 cm2/S at 25 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1792–1799, 2008  相似文献   

6.
Poly(isosorbide carbonate) (PIC) was synthesized by melt polycondensation of dimethyl carbonate (DMC) and isosorbide using lithium acetylacetonate (LiAcac) as the catalyst. The reaction conditions were optimized to achieve PIC with relatively high number‐average molecular weight (Mn) of 28,800 g/mol and isosorbide conversion of 95.2%. A series of poly(aliphatic diol‐co‐isosorbide carbonate)s (PAICs) were also synthesized by melt polycondensation of DMC with isosorbide and equimolar amounts of aliphatic diols (1,4‐butanediol, 1,5‐pentanediol, 1,6‐hexanediol, and 1,4‐cyclohexane dimethanol) in the presence of LiAcac and the TiO2/SiO2‐based catalyst (TSP‐44). PAICs with Mn values ranging from 18,700 to 34,400 g/mol and polydispersities between 1.64 and 1.69 were obtained. The 13C NMR analysis revealed the random microstructure of PAICs. The differential scanning calorimetry results demonstrated that all the PAICs were amorphous with a unique Tg ranging from 46 to 88 °C. The dynamic analysis results showed that the incorporation of linear or cyclohexane structure changed the dynamic mechanical properties of PIC drastically. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

8.
Triethylamine‐promoted polycondensations of 5,5′,6,6′‐tetrahydroxy‐3,3, 3′,3′‐tetramethyl spirobisindane (TTSBI) and α,ω‐alkane dicarboxylic acid dichlorides were performed with equimolar feed ratios. Three different procedures were compared. At a TTSBI concentration of 0.05 mol/L, gelation was avoided, and soluble cyclic polyesters having two OH groups per repeat unit were isolated. These polyesters were characterized with 1H NMR spectroscopy, MALDI‐TOF mass spectrometry, and SEC and DSC measurements. All polycondensations with sebacoyl chloride resulted in gelation, regardless of the procedure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1699–1706, 2007  相似文献   

9.
A series of fully aliphatic polyimidosiloxanes (APISiO) were prepared by poly(addition/condensation) reaction of bicyclo [2,2,2] oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride or cyclobutane‐1,2,3,4‐tetracarboxylic dianhydride and varying compositions of 1,3‐bis (3‐amino propyl)‐tetra methyl disiloxane and rigid adamantyl diamines (1,3‐diaminoadamantane or 3,3′‐diamino‐1,1′‐diadamantane) or flexible alicyclic diamines (4,4′‐methylene bis(cyclohexylamine) or 4,4′‐methylene bis(2‐methylcyclohexylamine)). High temperature one‐step synthesis in m‐cresol was employed to obtain APISiOs with intrinsic viscosity in the range of 0.28–0.59 dL/g. The final materials were characterized by 1H and 13C NMR, 29Si‐MAS‐NMR and IR spectroscopic analysis, thermogravimetric and differential scanning calorimetric analysis, and wide angle X‐ray diffractometry. UV–visible spectra revealed the optical behavior of the polyimides. It was found that the APISiOs containing appropriate ratio of adamantyl moieties together with flexible aliphatic siloxane groups exhibit good thermal and mechanical stabilities, solubility, fair transparency, and low dielectric constant (2.4–2.7). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5254–5270, 2006  相似文献   

10.
A method for the preparation of poly(aryl ether thianthrene)s has been developed in which the aryl ether linkage is generated in the polymer‐forming reaction. The thianthrene heterocycle is sufficiently electron‐withdrawing to allow fluoro displacement with phenoxides by nucleophilic aromatic substitution. The monomer for this reaction, 2,7‐difluorothianthrene, can be synthesized in a moderate yield by a simple reaction sequence. Semiempirical calculations at the PM3 level suggest that 2,7‐difluorothianthrene is sufficiently activated, whereas NMR spectroscopy (1H and 13C) indicates that the monomer is only slightly activated or (19F) not sufficiently activated for nucleophilic aromatic substitution. Model reactions with p‐cresol have demonstrated that the fluorine atoms on 2,7‐difluorothianthrene are readily displaced by phenoxides in high yields, and the process has been deemed suitable for polymer‐forming reactions. High‐molecular‐weight polymers have been produced from bisphenol A, bisphenol AF, and 4,4′‐biphenol. The polymers have been characterized with gel permeation chromatography, NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The glass‐transition temperatures for the polymers of different compositions and molecular weights range from 138 to 181 °C, and all the polymers have shown high thermooxidative stability, with 5% weight loss values in an air environment approaching 500 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6353–6363, 2004  相似文献   

11.
The luminescent complex [4‐(3‐hydroxypropyl)‐4′‐methyl‐2,2′‐bipyridine]‐bis(2,2′‐bipyridine)‐ruthenium(II)‐bis(hexafluoroantimonate) and its methacrylate derivative were successfully synthesized and fully characterized by two‐dimensional 1H and 13C{1H} NMR techniques [correlation spectroscopy (COSY) and heteronuclear multiple‐quantum coherence experiment (HMQC)], as well as matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. The respective labeled methyl methacrylate‐ruthenium(polypyridyl) copolymers were obtained by free‐radical copolymerization with methyl methacrylate and were characterized utilizing NMR, IR, and UV–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3954–3964, 2003  相似文献   

12.
Here we report on the preparation of two hydrogen atom free 3,3′‐bi(1,2,4‐oxadiazole) derivatives. 5,5′‐Bis(fluorodinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole) was synthesised by fluorination of diammonium 5,5′‐bis(dinitromethanide)‐3,3′‐bi(1,2,4‐oxadiazole). For our previously reported analogue 5,5′‐bis(trinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole), a new synthetic route starting from new 3,3′‐bi(1,2,4‐oxadiazolyl)‐5,5′‐diacetic acid was developed. In this course also hitherto unknown 5,5′‐dimethyl‐3,3′‐bi(1,2,4‐oxadiazole) was isolated. The compounds were characterised by multinuclear NMR spectroscopy, IR and Raman spectroscopy, elemental analysis as well as mass spectrometry. X‐ray diffraction studies were performed and the crystal structures for the 5,5'‐dimethyl and 5,5'‐(fluorodinitromethyl) derivatives are reported. The energetic 5,5'‐(fluorodinitromethyl) and 5,5'‐(trinitromethyl) compounds do not contain any hydrogen atoms and show remarkable high densities. Furthermore, the thermal stabilities and sensitivities were determined by differential scanning calorimetry (DSC) and standardised impact and friction tests. The heats of formation were calculated by the atomisation method based on CBS‐4M enthalpies. With these values and the room‐temperature X‐ray densities, several detonation and propulsion parameters, such as the detonation velocity and pressure as well as the specific impulse of mixtures with aluminium, were computed using the EXPLO5 code.  相似文献   

13.
1,4‐Bis(vinyldiphenylsilyl)benzene ( I ) has been prepared and copolymerized by Pt‐catalyzed hydrosilylation with 1,9‐dihydridodecamethylpentasiloxane ( II ), 3,5,7‐tris(3′,3′,3′‐trifluoropropyl)‐1,1,3,5,7,9,9‐heptamethylpentasiloxane ( III ) and two different α,ω‐bis(hydrido)polydimethylsiloxanes (PDMS). The monomers and polymers were fully characterized by IR, UV, 1H, 13C, 19F, and 29Si‐NMR spectroscopy. The starting PDMS polymers and the product copolymers were further characterized by GPC, DSC, and TGA. The polymers showed thermal transitions characteristic to thermoplastic elastomers. The 1,4‐bis(ethyldiphenylsilyl)benzene moieties displayed melting transitions above room temperature while copolymer glass transition temperatures were below room temperature. Fluorescence spectra and quantum efficiencies of I and copolymers have been determined. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4825–4831, 2006  相似文献   

14.
Numerous polycarbonates were prepared by means of “diphosgene” in pyridine using hydroquinone 4-hydroxybenzoate (HQHB) as mesogenic diphenol. In addition to the homopolycarbonate, binary copolycarbonates of HQHB and 4,4′-dihydroxychalcone (DHC) with varying molar composition were prepared. A series of ternary copolycarbonates were obtained by incorporation of isosorbide. Furthermore, an alternating copolycarbonate of HQHB and isosorbide was synthesized. All polycarbonates were characterized by inherent viscosities, elemental analyses, IR-, 1H-NMR, and 13C NMR spectroscopy, by WAXS powder patterns DSC measurements, and optical microscopy with crossed polarizers. The homopolycarbonate of HQHB and most binary copolycarbonates were semicrystalline materials forming an enantiotropic nematic melt. Particularly noteworthy is the finding that the alternating copolycarbonate of HQHB and isosorbide forms a broad cholesteric phase despite the unfavorable stereochemistry of isosorbide. The ternary copolycarbonates containing isosorbide formed a cholesteric melt and a Grandjean texture upon shearing. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1611–1619, 1997  相似文献   

15.
Poly(aryl ether)s were prepared by nucleophilic aromatic substitution using conformationally restricted dichloro‐ and difluorodibenzothiophene dioxide heterocyclic monomers with bisphenol A or bisphenol AF. The heterocyclic monomers were prepared from the bis(4‐halophenyl) sulfones in two steps via lithiation followed by copper catalyzed intramolecular coupling and characterized by 1H, 13C, 19F NMR spectroscopy and GC/MS. Reactivity of the fluorine containing monomer was examined using semi‐empirical methods and NMR spectroscopy measurements and found to be potentially more reactive than bis(4‐fluorophenyl) sulfone, even with a conformationally locked sulfone as the electron withdrawing group. Successful polymerizations of both the fluorine and chlorine containing monomers with bisphenol A and bisphenol AF nucleophiles were accomplished, providing polymers with number average molecular weights of approximately 45 kg/mol (difluoro monomer) and 10–20 kg/mol (dichloro monomer). The polymers exhibited high Tgs ranging from 238 to 256 °C and displayed good thermal stability with 5% degradation temperatures in air from 453–510 °C, depending on molecular weight and bisphenol composition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3127–3131  相似文献   

16.
A new phosphorous‐containing fatty acid diepoxide was obtained from 10‐undecenoyl chloride and 10‐(2′,5′‐dihydroxyphenyl)‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and crosslinked with 4,4′‐diaminodiphenylmethane and bis(m‐aminophenyl)methylphosphine oxide. The properties of the thermosetting materials were evaluated by differential scanning calorimetry, dynamic mechanical thermal analysis, thermogravimetric analysis, and limiting oxygen index (LOI). Thermal and thermooxidative degradation was studied by gas chromatography/mass spectrometry, FTIR, 31P magic angle spinning NMR spectroscopy, and scanning electron microscopy. LOI values indicate good flame‐retardant properties that are related to the formation of a protective phosphorous‐rich layer that slowed down the degradation and prevented it from being total. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5630–5644, 2006  相似文献   

17.
A 2,6‐dimethyl phenol–dipentene adduct was synthesized from dipentene (DP) and 2,6‐dimethyl phenol, and then a 2,6‐dimethyl phenol–DP epoxy was synthesized from the reaction of the resultant 2,6‐dimethyl phenol–DP adduct and epichlorohydrin. The proposed structures were confirmed by Fourier transform infrared, elemental analysis, mass spectra, NMR spectra, and epoxy equivalent weight titration. The synthesized 2,6‐dimethyl phenol–DP adduct was cured with 4,4‐diamino diphenyl methane, phenol novolac, 4,4‐diamino diphenyl sulfone, and 4,4‐diamino diphenyl ether. The thermal properties of the cured epoxy resins were studied with differential scanning calorimetry, dynamic mechanical analysis, dielectric analysis, and thermogravimetric analysis. These data were compared with those for the bisphenol A epoxy system. The cured 2,6‐dimethyl phenol–DP epoxy exhibited a lower dielectric constant (ca. 3.1), a lower dissipation factor (ca. 0.065), a lower modulus, lower thermal stability (5% degradation temperature = 366–424 °C), and lower moisture absorption (1.21–2.18%) than the bisphenol A system but a higher glass‐transition temperature (ca. 173–222 °C) than that of bisphenol A system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4084–4097, 2002  相似文献   

18.
Several polycondensations of ethylene carbonate with succinic anhydride or glutaric anhydride (GA) were conducted in bulk. Low molar mass polyesters were obtained with pyridine‐type catalysts and GA. Analogous polycondensations of trimethylene carbonate (TMC) and GA were successful when quinoline, 4‐(N,N‐dimethylamino)pyridine, or BF3 · OEt2 was used as a catalyst. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed the formation of cyclic oligoesters and polyesters by backbiting degradation. Monomer mixtures containing an excess of TMC yielded copoly(ester carbonate)s with number‐average molecular weights up to 16,000 Da. Analogous copoly(ester carbonate)s were obtained from TMC and 3,3′‐tetramethylene glutaric anhydride. Furthermore, combined polycondensation/ring‐opening polymerization reactions of TMC and GA with L ‐lactide or ?‐caprolactone were studied. All copolymers were characterized by viscosity measurements and by IR, 1H, and 13C NMR spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4357–4367, 2002  相似文献   

19.
4‐Fluorophenylsulfonylphenyl‐terminated polysulfone and 4‐fluorobenzoylphenyl ketone were prepared with bisphenol A and an excess of bis‐(4‐fluorophenyl)sulfone or 4,4′‐difluorobenzophenone, respectively, at 160 °C using potassium carbonate in N,N‐dimethylacetamide. The resulting polymers were reacted with 4‐hydroxystyrene to synthesize vinyl‐terminated polysulfones and ketones. The silicon‐containing polysulfones and ketones were prepared from the vinyl‐terminated polymer precursor and various H‐functional silanes or siloxanes. The synthesis of silicon‐containing polymers was achieved by hydrosilation with a rhodium catalyst. It was shown that the hydrosilation reaction proceeds with 55:45 chemoselectivity. The resulting polymers were investigated by 1H NMR spectroscopy, DSC, and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2937–2942, 2001  相似文献   

20.
Multi‐walled carbon nanotube (MWCNT) modified by vinyltriethoxysilane (VTES) via free radical reaction has been prepared (poly (vinyltriethoxysilane) modified MWCNTs, PVTES‐MWCNT). Precursor of polyimide, polyamic acid has been synthesized by reacting 4,4′‐oxydianiline with 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride. PVTES‐MWCNT were then mixed with polyamic acid and heated to 300 °C to form CNT/polyimide composite. During the imidization processes, the silanes on CNT surface reacted with each other and may be connected together by covalent bond (Si? O? Si). The PVTES‐MWCNT was analyzed by Fourier transform infrared and X‐ray photoelectron spectroscopy. The PVTES‐MWCNT/polyimide composites were analyzed by CP/MAS solid state 29Si nuclear magnetic resonance (NMR) spectroscopy. Morphological properties of the PVTES‐MWCNT/polyimide composites were investigated by scanning electron microscope and transmission electron microscope. Electrical conductivity increased dramatically comparing to the unmodified MWCNT/polyimide composites. Mechanical properties of nanocomposite were enhanced significantly by PVTES‐MWCNT. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 803–816, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号