首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the atoms from B to Ne) for the first‐row atoms, generated with an improved generator coordinate Hartree–Fock method, were contracted and enriched with polarization functions. These basis sets were tested for B2, C2, BeO, CN, LiF, N2, CO, BF, NO+, O2, and F2. At the Hartree–Fock (HP), second‐order Møller–Plesset (MP2), fourth‐order Møller–Plesset (MP4), and density functional theory (DFT) levels, the dipole moments, bond lengths, and harmonic vibrational frequencies were studied, and at the MP2, MP4, and DFT levels, the dissociation energies were evaluated and compared with the corresponding experimental values and with values obtained using other contracted Gaussian basis sets and numerical HF calculations. For all diatomic molecules studied, the differences between our total energies, obtained with the largest contracted basis set [6s5p3d1f], and those calculated with the numerical HF methods were always less than 3.2 mhartree. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 15–23, 2000  相似文献   

2.
The most stable conformation of ion-molecule complexes involving a CO molecule were surveyed by the use of Hartree-Fock (HF) MO and third-order Moller-Plesset perturbation (MP3) methods with a 6–31G* basis set ion = H+, Li+, Na+, K+, Bc2+, Mg2+, and Ca2+. The MP3 level of theory reveals the ion-CO conformation in which the ion bonds to a carbon atom of CO to be the most stable; these MP3 results are contrary to the HF ones. Binding energies of ion-molecule complexes involving CO and N2 were computed; MP3 energies are in good agreement with the experimental ones. The computed binding energies of cation-N2 are about one-third of cation-NH3 due to the absence of dipole moment and the smaller polarizability of N2. The decrease in binding energy in cation-CO and -N2 complexes, with increasing cation size, is mainly caused by the decrease of the electrostatic and polarization stabilizations.  相似文献   

3.
The performance of wavefunction‐based correlation methods in theoretical solid‐state chemistry depends on reliable Hartree–Fock (HF) results for infinitly extended systems. Therefore, we optimized basis sets of valence‐triple‐ζ quality based on HF calculations for the periodic system of group‐12‐metal difluorides. Scalar‐relativistic effects were included in the case of the metal‐ions by applying small‐core pseudopotentials. To assess the quality of the proposed basis sets, the structural parameters, bulk moduli as well as cohesive and lattice energies of the systems were evaluated at the HF and the density functional theory levels. In addition to these two mean‐field approaches and to assess further employment of our basis sets to wavefunction‐based correlation methods we performed periodic local MP2 computations. Finally, the possibilities of pressure induced structural phase transitions occurring in the ZnF2, CdF2, and HgF2 were investigated. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The intrapair and interpair correlation energies of F-, HF and H2F^ systems are calculated and analyzed using MP2-OPT2 method of MELD program with cc-PVSZ^* basis set. From the analysis of pair correlation energies of these isoelectronlc sysoterns, it is found that the 1sF^2 pair correlation energy is trans-ferable in these three isociectronic systems. According to the definition of pair correlation contribution of one electron pair to a system, the pair correlation contribution values of these three systems are calculated. The correlation contribution values of inner electron pairs and H—F bonding electron pair in HF molecule with those in H2F^ system are compared. The results indicate that the bonding effect of a molecule is one of the im-portant factors to influence electron correlation energy of the system. The comparison of correlation energy contributions in-cluding triple and quadruple excitations with those only includ-ing singles and doubles calculated with 6-311 G(d) basis set shows that the higher.excitation correlation energy contribution gives more than 2 % of the total correlation energy for these sys-tems.  相似文献   

5.
Equilibrium geometries, bond dissociation energies and relative energies of axial and equatorial iron tetracarbonyl complexes of the general type Fe(CO)4L (L = CO, CS, N2, NO+, CN, NC, η2‐C2H4, η2‐C2H2, CCH2, CH2, CF2, NH3, NF3, PH3, PF3, η2‐H2) are calculated in order to investigate whether or not the ligand site preference of these ligands correlates with the ratio of their σ‐donor/π‐acceptor capabilities. Using density functional theory and effective‐core potentials with a valence basis set of DZP quality for iron and a 6‐31G(d) all‐electron basis set for the other elements gives theoretically predicted structural parameters that are in very good agreement with previous results and available experimental data. Improved estimates for the (CO)4Fe–L bond dissociation energies (D0) are obtained using the CCSD(T)/II//B3LYP/II combination of theoretical methods. The strongest Fe–L bonds are found for complexes involving NO+, CN, CH2 and CCH2 with bond dissociation energies of 105.1, 96.5, 87.4 and 83.8 kcal mol–1, respectively. These values decrease to 78.6, 64.3 and 64.2 kcal mol–1, respectively, for NC, CF2 and CS. The Fe(CO)4L complexes with L = CO, η2‐C2H4, η2‐C2H2, NH3, PH3 and PF3 have even smaller bond dissociation energies ranging from 45.2 to 37.3 kcal mol–1. Finally, the smallest bond dissociation energies of 23.5, 22.9 and 18.5 kcal mol–1, respectively are found for the ligands NF3, N2 and η2‐H2. A detailed examination of the (CO)4Fe–L bond in terms of a semi‐quantitative Dewar‐Chatt‐Duncanson (DCD) model is presented on the basis of the CDA and NBO approach. The comparison of the relative energies between axial and equatorial isomers of the various Fe(CO)4L complexes with the σ‐donor/π‐acceptor ratio of their respective ligands L thus does not generally support the classical picture of π‐accepting ligands preferring equatorial coordination sites and σ‐donors tending to coordinate in axial positions. In particular, this is shown by iron tetracarbonyl complexes with L = η2‐C2H2, η2‐C2H4, η2‐H2. Although these ligands are predicted by the CDA to be stronger σ‐donors than π‐acceptors, the equatorial isomers of these complexes are more stable than their axial pendants.  相似文献   

6.
Ab initio quantum chemical calculations have been performed on X2Cl? and X2Cl (X = C, Si, Ge) clusters. The geometrical structures, vibrational frequencies, electronic properties and dissociation energies are investigated at the Hartree–Fock (HF), Møller–Plesset second‐ and fourth‐order (MP2, MP4), CCSD(T) level with the 6‐311+G(d) basis set. The X2Cl (X = C, Si, Ge) and X2Cl? (X = Si, Ge) take a bent shape obtained at the ground state, while C2Cl? has a linear structure. The impact on internal electron transfer between the X2Cl and the corresponding anional clusters is studied. The three different types of electron affinities (EAs) at the CCSD(T) are reported. The most reliable adiabatic electronic affinities, obtained at the CCSD(T)/cc‐pvqz level of theory, are predicted to be 3.30, 2.62, and 1.98 eV for C2Cl, Si2Cl, and Ge2Cl, respectively. The calculated EAs of C2Cl and Ge2Cl are in good agreement with theoretical results reported. The correlation effects and basis sets effects on the geometrical structures and dissociation energies are discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
In this study we compare the binding energies of polycoordinated complexes of Zn2+ within cavities composed of model “hard” (H2O, OH) or “soft” (CH3SH, CH3S) ligands. Ab initio supermolecule computations are performed at the HF and MP2 levels using extended basis sets to determine the binding energies and their components as a function of: the number of ligands, ranging from three to six; the net charge of the cavity; and the “hard” versus “soft” character of the ligands. These ab initio computations are used to test the reliability of the SIBFA molecular mechanics procedure, originally formulated and calibrated on the basis of ab initio computations, for such charged systems. The SIBFA intermolecular interaction energies match the corresponding ab initio values using a coreless effective potential split‐valence basis set with a relative error of ≤3%. Extensions to binuclear Zn2+ complexes, such as those that occur in the Zn‐binding sites of Gal4 and β‐lactamase proteins, are performed to test the applicability of the methodology for such systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1011–1039, 2000  相似文献   

8.
This work characterizes eight stationary points of the P2 dimer and six stationary points of the PCCP dimer, including a newly identified minimum on both potential energy surfaces. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with the second‐order Møller–Plesset (MP2) electronic structure method and six different basis sets: aug‐cc‐pVXZ, aug‐cc‐pV(X+d)Z, and aug‐cc‐pCVXZ where X = T, Q. A new L‐shaped structure with C2 symmetry is the only minimum for the P2 dimer at the MP2 level of theory with these basis sets. The previously reported parallel‐slipped structure with C2h symmetry and a newly identified cross configuration with D2 symmetry are the only minima for the PCCP dimer. Single point energies were also computed using the canonical MP2 and CCSD(T) methods as well as the explicitly correlated MP2‐F12 and CCSD(T)‐F12 methods and the aug‐cc‐pVXZ (X = D, T, Q, 5) basis sets. The energetics obtained with the explicitly correlated methods were very similar to the canonical results for the larger basis sets. Extrapolations were performed to estimate the complete basis set (CBS) limit MP2 and CCSD(T) binding energies. MP2 and MP2‐F12 significantly overbind the P2 and PCCP dimers relative to the CCSD(T) and CCSD(T)‐F12 binding energies by as much as 1.5 kcal mol?1 for the former and 5.0 kcal mol?1 for the latter at the CBS limit. The dominant attractive component of the interaction energy for each dimer configuration was dispersion according to several symmetry‐adapted perturbation theory analyses. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
The different configurations (linear, zig‐zag, and cyclic) of formamide dimers have been studied at the level of both Hartree–Fock (HF) and second order Møller–Plesset perturbation theory (MP2). The widely used a posteriori Boys–Bernardi “counterpoise” (CP) correction scheme has been compared with our a priori methods utilizing the “chemical Hamiltonian approach” (CHA). The appropriate interaction energies have been calculated in six different basis sets (6‐31G, 6‐31G**, DZV, DZP, TZV, and cc‐pVDZ). © 2001 John Wiley & Sons, Inc. Int J Quant Chem, 2001  相似文献   

10.
Isodesmic reactions are commonly used in ab initio studies to partially cancel errors associated with incomplete basis sets and incomplete correction for electron correlation. The errors associated with these reactions have been examined using the 6–31G* basis set at the theoretical levels HF, MP2, MP3, MP4, and B3LYP, and using the 6–311 + G* basis set at the HF, MP2, and B3LYP levels. As a comparison, the recently developed model chemistries, CBS-4 and CBS-Q, were also used. With hydrogenation and hydrogenolysis reactions, only the HF level gave large deviations from the experimental reaction energies. The use of hydrogen transfer reactions improved the HF calculated energies, but mixed results were obtained at the correlated levels. Some isomerization reactions and reactions of carbocations also were examined. The MP4/6–31G* and CBS-Q levels of theory were uniformly the more satisfactory. © 1997 by John Wiley & Sons, Inc.  相似文献   

11.
New adjusted Gaussian basis sets are proposed for first and second rows elements (H, B, C, N, O, F, Si, P, S, and Cl) with the purpose of calculating linear and mainly nonlinear optical (L–NLO) properties for molecules. These basis sets are new generation of Thakkar‐DZ basis sets, which were recontracted and augmented with diffuse and polarization extrabasis functions. Atomic energy and polarizability were used as reference data for fitting the basis sets, which were further applied for prediction of L–NLO properties of diatomic, H2, N2, F2, Cl2, BH, BF, BCl, HF, HCl, CO, CS, SiO, PN, and polyatomic, CH4, SiH4, H2O, H2S, NH3, PH3, OCS, NNO, and HCN molecules. The results are satisfactory for all electric properties tested; dipole moment (µ), polarizability (α), and first hyperpolarizability (β), with an affordable computational cost. Three new basis sets are presented and called as NLO‐I (ADZP), NLO‐II (DZP), and NLO‐III (VDZP). The NLO‐III is the best choice to predict L–NLO properties of large molecular systems, because it presents a balance between computational cost and accuracy. The average errors for β at B3LYP/NLO‐III level were of 8% for diatomic molecules and 14% for polyatomic molecules that are within the experimental uncertainty. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Various properties of typical structures of water clusters in the n = 2–34 size regime with the change of cluster size have been systematically explored. Full optimizations are carried out for the structures presented in this article at the Hartree–Fock (HF) level using the 6‐31G(d) basis set by taking into account the positions of all atoms within the cluster. The influence of the HF level on the results has been reflected by the comparison between the binding energies of (H2O)n (n = 2–6, 8, 11, 13, 20) calculated at the HF level and those obtained from high‐level ab initio calculations at the second‐order Møller–Plesset (MP2) perturbation theory and the coupled cluster method including singles and doubles with perturbative triples (CCSD(T)) levels. HF is inaccurate when compared with MP2 and CCSD(T), but it is more practical and allows us to study larger systems. The computed properties characterizing water clusters (H2O)n (n = 2–34) include optimal structures, structural parameters, binding energies, hydrogen bonds, charge distributions, dipole moments, and so on. When the cluster size increases, trends of the above various properties have been presented to provide important reference for understanding and describing the nature of the hydrogen bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
Vibrational analysis of tellurium tetrachloride, TeCl4, was performed with Hartree–Fock (HF), MP2, and generalized gradient approximation density functional theory (DFT) methods supplemented with polarized double-zeta split valence (DZVP) basis sets and relativistic effective core potentials (RECP) of Hay and Wadt. The molecular geometry is best reproduced at the HF and MP2/RECP+DZVP [polarized Hay and Wadt RECP for Te and 6–31G(d) basis set for Cl] levels of theory. The DFT methods gave rise to poorer results, especially those using Becke's 1988 exchange functional. Generally, the vibrational frequencies calculated by the MP2 and B3-type DFT methods with the all electron and RECP+DZVP basis sets as well as at the HF/RECP level were in satisfactory accord with the experimental data. The agreement was good enough to assist the assignment of the measured vibrational spectra. The best agreement with the experimental vibrational frequencies was achieved with the scaled HF/RECP force field. Consistent results were obtained for the unobserved A24) fundamental, where the results of the best methods were within 4 cm−1. The best force fields were obtained with the following methods: Becke3–Lee–Yang–Parr and Becke3–Perdew/all electron basis, MP2 and Becke3-Perdew/RECP+DZVP, and HF/RECP. The methods using RECPs are advantageous for large-scale computations. The RECP basis set effectively compensates the errors of the HF method for TeCl4; however, it provides poor results with correlated methods. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 308–318, 1998  相似文献   

14.
A new four‐dimensional intermolecular potential energy surface for CS2 dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center‐of‐mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller–Plesset second‐order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug‐cc‐pVxZ, x = D, T) and corrected for the basis‐set superposition error using the full counterpoise correction method. A two‐point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole–dipole dispersion coefficient (C6) of CS2 fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well‐known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol?1 at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.  相似文献   

15.
Chemically activated CF3SH, CFCl2SH, and CF2ClSH were formed through combination of SH and CF3, CFCl2, and CF2Cl radicals, respectively. The SH radical was prepared by abstraction of an H‐atom from H2S by the halocarbon radical produced during photolysis of (CF3)2C=O, (CFCl2)2C=O, or (CF2Cl)2C=O. 1,2‐HX (X = F, Cl) elimination reactions were observed from CF3SH, CFCl2SH, and CF2ClSH with products detected by GC‐MS. The combination reaction of CF2Cl radicals with SH radicals prepared CF2ClSH molecules with approximately 318 kJ/mol of internal energy. The experimental rate constants for elimination of HCl and HF from CF2ClSH were 3 ± 3 × 1010 and 2 ± 1 × 109 s?1, respectively. Comparison to Rice–Ramsperger–Kassel–Marcus (RRKM) calculated rate constants assigned the threshold energies as 171 ± 12 and 205 ± 12 kJ/mol for the unimolecular elimination of HCl and HF, respectively. Theoretical calculations using the B3PW91, MP2, and M062X methods with the 6311+G(2d,p) and 6‐31G(d',p') basis sets established that for a specific method the threshold energies differ by only 4 kJ/mol between the two different basis sets. There was wide variation among the three methods, but the M062X approach appeared to give threshold energies closest to the experimental values. Chemically activated CF3SH and CFCl2SH were also prepared with about 318 kcal mol?1 of internal energy, and the HX (X = F, Cl) elimination reactions were observed. Only HCl loss was detected from CFCl2SH, but the rate was too fast to measure with our kinetic method; however, based on our detection limit the HF elimination channel is at least 50 times slower.  相似文献   

16.
Weakly bound linear and bent dimers, FH—X (where X = CO, OC, CNH, NCH, N2O and ON2), are investigated using the DFT B3LYP and ab initio MP2 methods with the same basis sets (6–311++G(3df,2pd)). The strengths of the H—C or H—N H‐bonds in dimers FH—CO, FH—CNH, and FH—N2O are compared with those of the H—O or H—N H‐bonds in dimers FH—OC, FH—NCH, and FH—ON2. The results obtained for the H‐bond distances, the elongation effect of the HF bond, the red shift of the HF stretching frequency, and the energy difference between the dimer and the charge transfer reveal that the H‐bonds of the first group of dimers are stronger than those of the second. The Gibbs energies calculated for the six dimer formations indicate that the weakly bound dimers are unstable at room temperature (T = 298 K) (FH—X's → FH + X's, ΔG < 0).  相似文献   

17.
The potential energy curves (PECs) of A3Σ, B3Πg, W3Δu, and B′3Σ electronic states of the N2 molecule have been studied for internuclear separations from 0.05 to 2.0 nm using the full valence complete active space self‐consistent‐field method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation‐consistent basis sets. Effects on the PECs by the core–valence correlation and relativistic corrections are taken into account. The way to consider the relativistic correction is to use the second‐order Douglas‐Kroll Hamiltonian approximation. The core–valence correlation correction is made with the cc‐pCV5Z basis set. And the relativistic correction is performed at the level of cc‐pV5Z basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size‐extensivity errors by the Davidson modification (MRCI+Q). These PECs are extrapolated to the complete basis set limit. The spectroscopic parameters of 14N2, 14N15N, and 15N2 isotopologs have been evaluated and compared with those reported in the literature. Excellent agreement has been found between the present results and the Rydberg‐Klein‐Rees (RKR) data. With the PECs obtained by the MRCI+Q/CV+DK+56 calculations, the first 30 vibrational states for three species are computed for each electronic state. And for each electronic state of each species, the vibrational level G(ν), inertial rotation constant Bν, and centrifugal distortion constant Dν have been determined, which agree well with the RKR data. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

18.
In order to obtain efficient basis sets for the evaluation of van der Waals complex intermolecular potentials, we carry out systematic basis set studies. For this, interaction energies at representative geometries on the potential energy surfaces are evaluated using the CCSD(T) correlation method and large polarized LPol‐n and augmented polarization‐consistent aug‐pc‐2 basis sets extended with different sets of midbond functions. On the basis of the root mean square errors calculated with respect to the values for the most accurate potentials available, basis sets are selected for fitting the corresponding interaction energies and getting analytical potentials. In this work, we study the Ne–N2 van der Waals complex and after the above procedure, the aug‐pc‐2–3321 and the LPol‐ds‐33221 basis set results are fitted. The obtained potentials are characterized by T‐shaped global minima at distances between the Ne atom and the N2 center of mass of 3.39 Å, with interaction energies of ?49.36 cm?1 for the aug‐pc‐2–3321 surface and ?50.28 cm?1 for the LPol‐ds‐33221 surface. Both sets of results are in excellent agreement with the reference surface. To check the potentials further microwave transition frequencies are calculated that agree well with the experimental and the aV5Z‐33221 values. The success of this study suggests that it is feasible to carry out similar accurate calculations of interaction energies and ro‐vibrational spectra at reduced cost for larger complexes than has been possible hitherto. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The equilibrium geometries and the vibration frequencies of M2As and M2Br+ (M = Cu, Ag, Au) are calculated at the Hartree–Fock (HF) and the second‐order Møller–Plesset (MP2) levels with pseudopotentials. The calculated results indicate that the species have a bent structure (C2v). The electron correlation corrections on the geometrical structure are investigated at the MP2 level, the bond angles are reduced by 10°–20° for considered species. The electron correlation effects on the geometry of the Au2As are studied particularly at MP2, MP3, MP4, CCSD and CCSD(T) levels. Comparing the species containing Ag and Au, the relativistic effects slightly short the bond lengths of the species. The bonding possibility of the Au2As is predicted. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 80: 38–43, 2000  相似文献   

20.
Basis set expansion and correlation effects on computed hydrogen bond energies of the positive ion complexes AHn · AHn + 1+1, for AHn = NH3, OH2 and FH, have been evaluated. The addition of diffuse functions on nonhydrogen atoms is the single most important enhancement of split-valence plus polarization basis sets for computing hydrogen bond energies. Basis set enhancement effects appear to be additive in these systems. The correlation energy contribution to the stabilization energies of these complexes is significant, with the second order term being the largest term and having a stabilizing effect. The third order term is smaller and of opposite sign, while the fourth order term is smaller yet and stabilizing. As a result, computed MP4 stabilization energies are bracketed by the MP2 and MP3 energies. The overall effect of basis set enhancement is to decrease hydrogen bond energies, whereas the addition of electron correlation increases stabilization energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号