首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
铁氧化物/金磁性核壳纳米粒子的制备及其富集与SERS研究   总被引:3,自引:0,他引:3  
本文用种子生长法制备铁氧化物/金磁性核壳纳米粒子, 并利用SERS对其磁场靶向性进行了检测.  相似文献   

2.
利用乙二醇还原法合成了Pt3Co磁性纳米颗粒,利用TEM、TG-DTA和磁滞回线的测量对其进行表征,结果表明,纳米颗粒的平均粒径为2.3nm,且粒径分布较窄,具有较高的矫顽力。  相似文献   

3.
利用反相微乳法, 以巯基乙酸修饰的水溶性CdTe量子点为核, 包覆SiO2, 制备得到核壳型CdTe@SiO2荧光纳米复合粒子. 用紫外-可见(UV-vis)分光光度计, 荧光(PL)分光光度计, 红外(FT-IR)光谱仪, 透射电子显微镜(TEM)等分析测试手段, 对得到的荧光纳米复合粒子的性能进行表征, 结果表明: 得到的CdTe@SiO2纳米复合粒子是核壳型结构, 由SiO2壳层包覆多个量子点, 其大小均匀, 水溶性好, 有效地提高了量子点的稳定性, 大大增强了其抗光漂白性能, 为该材料的进一步生物应用打下了良好的基础.  相似文献   

4.
Using a successive method, PAMAM dendrimer‐encapsulated bimetallic PdPt nanoparticles have been successfully prepared with core‐shell structures (Pd@Pt DENs). Evidenced by UV‐vis spectra, high resolution transmission electron microscopy, and X‐ray energy dispersive spectroscopy (EDS), the obtained Pd@Pt DENs are monodispersed and located inside the cavity of dendrimers, and they show a different structure from monometallic Pt or Pd and alloy PdPt DENs. The core‐shell structure of Pd@Pt DENs is further confirmed by infrared measurements with carbon monoxide (IR‐CO) probe. In order to prepare Pd@Pt DENs, a required Pd/Pt ratio of 1:2 is determined for the Pt shell to cover the Pd core completely. Finally, a mechanism for the formation of Pd@Pt DENs is proposed.  相似文献   

5.
Star‐like amphiphilic triblock copolymers were rationally designed and synthesized by combining two sequential atom‐transfer radical polymerization reactions with a click reaction. Subsequently, a family of uniform magnetic/plasmonic core/shell nanoparticles was crafted by capitalizing on these triblock copolymers as nanoreactors. The diameter of the magnetic core and the thickness of the plasmonic shell could be independently and accurately controlled by varying the molecular weights (i.e., the chain lengths) of the inner and intermediate blocks of the star‐like triblock copolymers, respectively. The surface plasmonic absorption of core/shell nanoparticles with different core diameters and shell thicknesses was systematically studied and theoretically modeled. This robust strategy provides easy access to a large variety of multifunctional nanoparticles with large lattice mismatches for use in optics, optoelectronics, catalysis, or bioimaging.  相似文献   

6.
Electrochemical characterization of palladium nanoparticles surrounded by a palladium oxide shell (Pd@PdO) is described from a combination of voltammetry plus electrochemical quartz crystal microbalance experiments at nanoparticle deposits on graphite electrodes in contact with aqueous H2SO4 and NaOH solutions. A method for determining the metal core size and oxide shell thickness of the Pd@PdO nanoparticles, based on a combination of conventional voltammetry of nanoparticles in DMSO solution and voltammetry of nanoparticle deposits in contact with 0.10 M aqueous NaOH solution, is described.  相似文献   

7.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

8.
This paper describes the use of reversed-phase liquid chromatography (RPLC) to rapidly characterize Au/Pt core/shell nanoparticles (NPs) produced through seed-assisted synthesis. We monitored the sizes of Au/Pt core/shell NPs by using a porous silica-based RPLC column (pore size: ca. 100 nm) and 30 mM sodium dodecyl sulfate in deionized water as the mobile phase; the plot of the retention time with respect to the logarithm of the size of the Au NPs was linear (R2 = 0.997) for diameters falling in the range from 5.3 to 40.1 nm; from five consecutive runs, the relative standard deviations of these retention times were less than 0.4%. We used the optimal separation conditions of the RPLC system to study the effects that the rate of addition of the reducing agent and the volumes of the seed, shell precursor metal ion, and reducing agent solutions had on the sizes of the Au/Pt core/shell NPs. A good correlation existed between the sizes of the Au/Pt core/shell NPs determined through RPLC and those determined using transmission electron microscopy. RPLC appears to be a useful technique for monitoring the sizes of NPs and nanomaterials in general.  相似文献   

9.
10.
Iron oxide@Poly(Glycidylmethacrylate‐methyl methacrylate‐divinyl benzene) magnetic composite core shell microspheres Fe3O4@P(GMA‐MMA‐DVB) with epoxy group on the surface was designed and synthesized by solvothermal process followed by distillation polymerization. The surface epoxy group was modified with amino group of ethylene diamine (EDA) to prepare Fe3O4@P(GMA‐MMA‐DVB)/NH2 microspheres, and then effects of modification on the structure, interfacial behavior and hence demulsification of the amino modified epoxy coating were examined. The prepared magnetic microspheres were characterized using a laser particle size analyzer, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. Fourier transform infrared spectrometer analysis indicates the presence of epoxy group, amino group and Fe3O4 in the final Fe3O4@P(GMA‐MMA‐DVB) and Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres. Our experimental results show that Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres exhibit good interfacial and demulsification properties and able to remove emulsified water from stable emulsion. The resulting microspheres showed excellent magnetic properties and further these can be recycled and reused by magnetic separation.  相似文献   

11.
A kind of cellulose magnetic nanoparticle with a core / shell structure has been prepared by ultrasonic irradiation. Cellulose acts as the shell while Fe3O4 magnetic nanoparticles take the role as the core. Magnetic force microscopy(MFM)with atomic force microscopy(AFM)measurement showed that the size of the magnetic nanoparticles is about 30-50 nm in diameter,while the Fe3O4 core is about 20-30 nm. FT-IR,XRD and MFM was used to provide the chemical and magnetic information of the nanoparticles. The MFM image showed that the nanoparticles separate very well with each other,indicating the cellulose shell produces a good prevention from the aggregation of the Fe3O4 particles. MFM studies also showed two magnetic nanoparticles can form particle-pairs,indicating a weak magneto-dipole interaction between magnetic nanoparticles. It is also found that the average sizes of magnetic nanoparticles have relation to the power of ultrasonic irradiation,and the possible mechanism is discussed.  相似文献   

12.
采用化学共还原方法制备了石墨烯负载Pt/Co双金属纳米颗粒(GBNPS)催化剂,并将其用于催化硼氢化钾(KBH4)水解制氢.采用透射电子显微镜(TEM)、X射线衍射(XRD)仪和X射线光电子能谱(XPS)表征了该催化剂,并研究了双金属纳米颗粒的化学组成对其催化KBH4水解制氢性能的影响.结果表明,制备的石墨烯负载Pt/Co双金属纳米颗粒平均粒径为3.2~3.9 nm,其中石墨烯负载Pt20Co80双金属纳米颗粒的催化活性最高,35℃时制氢活性可达35973 molH2·h-1·mol-1Pt,且具有良好的耐久性,催化KBH4水解反应的表观活化能为36 kJ/mol.  相似文献   

13.
Stable core‐shell latex was synthesized by semicontinuous seeded emulsion polymerization with core monomers consisting of styrene (St), butyl acrylate (BA), and shell monomers consisting of methyl methacrylate (MMA), eutyl acrylate (EA), and methacrylic acid (MAA). The effects of compound emulsifier amount, mass ratio of anionic/nonionic emulsifier, and initiator amount on latex performance were investigated. By particle size analysis and transmission electron microscopy (TEM) observation, results suggest that final latex particles have clearly core shell structures.  相似文献   

14.
利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物(PEO-b-PNIPAM), 通过"grafting to"使其接枝到金纳米粒子表面. 通过透射电子显微镜、 紫外-可见吸收光谱、 能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为. 实验结果表明, 得到核壳结构的金纳米粒子, 同时其壳层具有温度响应行为. 随着温度的升高, 其流体力学半径略有减小. 在整个升温过程中, 由于外层PEO链段的抑制作用, 没有发生粒子间的聚集.  相似文献   

15.
16.
将水热合成与溶剂蒸发法相结合, 以尖晶石结构的纳米铁酸镍为磁核, 成功制备了磁载钛硅分子筛. 采用傅里叶变换红外光谱仪(FTIR)、 振动样品磁强计(VSM)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和X射线衍射仪(XRD)等对样品进行了表征. 结果表明, 所制备的磁载钛硅分子筛颗粒呈球形, 分布均匀, 颗粒直径约为100~150 nm, 具有明显核/壳结构和超顺磁特征. 磁载钛硅分子筛在环己酮氨肟化反应中表现出良好的催化活性, 环己酮转化率达到98%, 产物选择性在97%以上.  相似文献   

17.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

18.
Liquid‐crystalline dendrons carrying either a thiol or disulfide function which display nematic, smectic A, columnar, or chiral nematic phases have been synthesized. Their mesomorphic properties are in agreement with the nature of the mesogenic units and structure of the dendrons. The first‐generation poly(aryl ester) dendron containing two cyanobiphenyl mesogenic units was used to functionalize gold nanoparticles. For full coverage, a smectic‐like supramolecular organization on the nanometer scale is observed, when the gold nanoparticles are spread onto carbon‐coated copper grids. This result indicates that the dendritic ligands reported here act as self‐organization promoters.  相似文献   

19.
磁性聚苯胺纳米微球的合成与表征   总被引:1,自引:0,他引:1  
报道了具有核壳结构的Fe3O4-聚苯胺磁性纳米微球的合成方法和表征结果.微球同时具有导电性和磁性能.在优化的实验条件下,可得到饱和磁化强度Ms为55.4 emu/g,矫顽力Hc为62 Oe的磁性微球.微球的导电性随着微球中Fe含量的增加而下降.微球的磁性能则随着Fe含量的增加而增大.Fe3O4磁流体的粒径和磁性聚苯胺微球的粒径均在纳米量级.纳米Fe3O4粒子能够提高复合物的热性能.实验表明,磁流体和聚苯胺之间可能存在着一定的相互作用,但这种相互作用较为复杂,难于研究  相似文献   

20.
The local symmetry and local magnetic properties of 6 nm‐sized, bimetallic, cyanide‐bridged CsNiCr(CN)6 coordination nanoparticles 1 and 8 nm‐sized, trimetallic, CsNiCr(CN)6@CsCoCr(CN)6 core–shell nanoparticles 2 were studied by X‐ray absorption spectroscopy (XAS) and X‐ray magnetic circular dichroism (XMCD). The measurements were performed at the NiII, CoII, and CrIII L2,3 edges. This study revealed the presence of distorted NiII sites located on the particle surface of 1 that account for the uniaxial magnetic anisotropy observed by SQUID measurements. For the core–shell particles, a combination of the exchange anisotropy between the core and the shell and the pronounced anisotropy of the CoII ions is the origin of the large increase in coercive field from 120 to 890 Oe on going from 1 to 2 . In addition, XMCD allows the relative orientation of the magnetic moments throughout the core–shell particles to be determined. While for the bimetallic particles of 1 , alignment of the magnetic moments of CrIII ions with those of NiII ions leads to uniform magnetization, in the core–shell particles 2 the magnetic moments of the isotropic CrIII follow those of CoII ions in the shell and those of NiII ions in the core, and this leads to nonuniform magnetization in the whole nanoobject, mainly due to the large difference in local anisotropy between the CoII ions belonging to the surface and the NiII ions in the core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号