首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用一种简单的合成方法, 以钌羰基卟啉(1)和二氧钌卟啉(2)为原料, 与不同的氨基酸酯作用, 得到系列单氨基酸酯羰基和双氨基酸酯为轴向配体的钌卟啉配合物(4a~4c和5a~5d). 所有化合物均经过红外光谱、 核磁共振谱和质谱等表征手段确证为目标化合物, 并用X射线单晶衍射测定了化合物4a的分子结构, 这对研究钌卟啉与生物大分子的相互作用具有重要的意义.  相似文献   

2.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

3.
许娟  姚夙  李红 《分析测试学报》2007,26(4):598-602
概述了近年来国内外对钌配合物的研究,主要介绍了它们的电化学性质及其在电致化学发光中的应用。  相似文献   

4.
5.
6.
Four polypyridyl bridging ligands BL1−4 containing open‐chain crown ether, where BL1−3 formed by the condensation of 4,5‐diazafluoren‐9‐oxime with diethylene glycol di‐p‐tosylate, triethylene glycol di‐p‐tosylate, and tetraethylene glycol di‐p‐tosylate, respectively. BL4 formed by the reaction of 4‐(1,10‐phenanthrolin‐5‐ylimino)methylphenol with triethylene glycol di‐p‐tosylate, have been synthesized. Reaction of Ru(bpy)2Cl2·2H2O with BL, respectively, afforded four bimetallic complexes [(bpy)2RuBL1−4Ru(bpy)2]4+ as [PF6] salts. Electrochemistry of these complexes is consistent with one RuII‐based oxidation and several ligand‐based reductions. These complexes show metal‐to‐ligand charge transfer absorption at 439‐452 nm and emission at 570‐597 nm.  相似文献   

7.
The synthesis, spectroscopic, electrochemical and photophysical characterization of a series of dinuclear ruthenium(II) complexes of the type [(bpy)2Ru(NnN)2RuCl(bpy)2](PF6)3, where NnN = 4,4′‐bipyridyl (N0N), 1,2‐bis(4‐pyridyl)ethylene (NEN), 1,2‐bis(4‐pyridyl)ethane (N2N), and 4,4′‐trimethylenedipyridine (N3N) are reported. The photophysical and electrochemical properties are discussed with particular emphasis on the ability of the bridging ligands to support intercomponent interaction.  相似文献   

8.
9.
Herein, we developed a Ru(II)(BPGA) complex that could be used to catalyze chemo‐ and site‐selective C?H oxidation. The described ruthenium complex was designed by replacing one pyridyl group on tris(2‐pyridylmethyl)amine with an electron‐donating amide ligand that was critical for promoting this type of reaction. More importantly, higher reactivities and better chemo‐, and site‐selectivities were observed for reactions using the cis‐ruthenium complex rather than the trans‐one. This reaction could be used to convert sterically less hindered methyne and/or methylene C?H bonds of a various organic substrates, including natural products, into valuable alcohol or ketone products.  相似文献   

10.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

11.
Herein are described some continuing investigations into the reactions of cyano‐alkenes with diynyl‐ruthenium complexes which have resulted in the preparation and characterisation of diynyl‐ruthenium compounds Ru(C≡CC≡CR)(PP)Cp [R = Ph, PP = dppe; R = Fc, PP = dppf; R = CPh=CBr2, PP = (PPh3)2], together with the polycyanobutadienyls Ru{C≡CC[=C(CN)2]CR=CR′(CN)}(PP)Cp′ [R = Fc, (PP)Cp′ = (dppf)Cp; R = H, SiMe3, (PP)Cp′ = (dppe)Cp*] formed by [2 + 2]‐cycloaddition of the cyano‐alkenes to the outer C≡C triple bonds and subsequent ring‐opening reactions. Single‐crystal XRD molecular structure determinations of six complexes are reported.  相似文献   

12.
Reactions of pyrazole based ligand and halide bridged arene d6 metal precursors resulted a series of mono and di‐substituted pyrazole based half sandwich d6 metal complexes. In general, they are formulated as [(arene)MLCl2] [M = Ru, arene = benzene ( 1 ), p‐cymene ( 2 ), arene = Cp*, M = Rh ( 3 ) and Ir ( 4 )] and [(arene)ML2Cl] [M = Ru, arene = benzene ( 5 ), p‐cymene ( 6 ), arene = Cp*, M = Rh ( 7 ) and Ir ( 8 )]. All these complexes were characterized by various spectroscopic techniques (IR, 1H NMR, ESI‐MS, and UV/Vis). The molecular structures were confirmed by single‐crystal X‐ray diffraction technique. Spectroscopic studies revealed that complexation i.e., mono‐ and di‐substitution occurred by the ratio‐based reaction between pyrazole ligand and metal precursor through the neutral nitrogen rather than protic nitrogen. In these complexes deprotonation of the protic nitrogen does not occur unlike the other complexes containing pyrazole derivatives, in which the pyrazole ligand is anionic.  相似文献   

13.
14.
Three coordination polymers (CPs) based on the 5‐[4‐(1H‐imidazol‐1‐yl)phenyl]‐1H‐tetrazole ( HL ) ligand, namely, [Cu(μ2‐ L )(μ4‐pbda)(H2O)] ( 1 ), [Cu2(μ‐Hbtc)(H2btc)(μ3‐OH)(μ4‐ HL )] ( 2 ) and [Cu53‐ L )(μ4‐ L )(μ3‐ip)(μ3‐OH)(H2O)2] · 2H2O ( 3 ) (H2pbda = 1,4‐benzenedicarboxylic acid, H3btc = 1,3,5‐benzenetricarboxylic acid, H2ip = isophthalic acid) were hydrothermally synthesized and structurally characterized. Complex 1 represents “weave”‐type 2D layers consisting of wave‐like 1D chains and 1D straight chains, which are further connected by hydrogen bonds to form a 3D supramolecular structure. Complex 2 exhibits a uninodal (4)‐connected 2D layer with a point symbol of {44 · 62}, in which the L ligand can be described as μ5‐bridging and the H2btc ions display multiple kinds of coordination modes to connect CuII ions into 1D “H”‐type Cu‐H2btc chains. In complex 3 , 2D Cu‐ L layers with two kinds of grids and 1D “stair”‐type Cu‐ip chains link each other to construct a 3D {412 · 63} framework, which contains the pentanuclear subunits. Deprotonated degree and coordination modes of carboxylate ligands may consequentially influence the coordination patterns of main ligands and the final structures of complexes 1 – 3 . Furthermore, electrochemical behaviors and electrocatalytic activities of the title complexes were analyzed at room temperature, suggesting practical applications in areas of electrocatalytic reduction toward nitrite and hydrogen dioxide in aqueous solutions, respectively.  相似文献   

15.
Ru(II) complexes 1 – 3 bearing various N‐heterocyclic carbene (NHC) ligands were synthesized, and their photophysical, electrochemical, and electrogenerated chemiluminescence (ECL) properties were discussed to evaluate a potential of their use as multicolor ECL labels. Interestingly, they exhibited ECL emission ranging from greenish‐yellow to red both in nonaqueous and mixed aqueous solutions, which might show the potential of the Ru(II) complexes as multicolor ECL labels.  相似文献   

16.
17.
18.
The reaction of [(η5‐L3)Ru(PPh3)2Cl], where; L3 = C9H7 ( 1 ), C5Me5 (Cp*) ( 2 ) with acetonitrile in the presence of [NH4][PF6] yielded cationic complexes [(η5‐L3)Ru(PPh3)2(CH3CN)][PF6]; L3= C9H7 ([3]PF6) and L3 = C5Me5 ([4]PF6), respectively. Complexes [3]PF6 and [4]PF6 reacts with some polypyridyl ligands viz, 2,3‐bis (α‐pyridyl) pyrazine (bpp), 2,3‐bis (α‐pyridyl) quinoxaline (bpq) yielding the complexes of the formulation [(η5‐L3)Ru(PPh3)(L2)]PF6 where; L3 = C9H7, L2 = bpp, ([5]PF6), L3 = C9H7, L2 = bpq, ([6]PF6); L3 = C5Me5, L2 = bpp, ([7]PF6) and bpq, ([8]PF6), respectively. However reaction of [(η5‐C9H7)Ru(PPh3)2(CH3CN)][PF6] ([3]PF6) with the sterically demanding polypyridyl ligands, viz. 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) or tetra‐2‐pyridyl‐1,4‐pyrazine (tppz) leads to the formation of unexpected complexes [Ru(PPh3)2(L2)(CH3CN)][PF6]2; L2 = tppz ([9](PF6)2), tptz ([11](PF6)2) and [Ru(PPh3)2(L2)Cl][PF6]; L2 = tppz ([10]PF6), tptz ([12]PF6). The complexes were isolated as their hexafluorophosphate salts. They have been characterized on the basis of micro analytical and spectroscopic data. The crystal structures of the representative complexes were established by X‐ray crystallography.  相似文献   

19.
Isomerically pure nitrile complexes cis‐[Ru(dppm)2Cl(NCR)]+ ( 2 a – d ) are formed upon chloride displacement from cis‐[Ru(dppm)2Cl2] ( 1 ) or, alternatively, by ligand substitution from the acetonitrile complex 2 a . This latter approach does also allow for the introduction of pyridine ( 3 a , b ), heptamethyldisilazane ( 4 ) or isonitrile ligands ( 5 ). All complexes are obtained as the configurationally stable cis‐isomers. Only cis‐[Ru(dppm)2Cl(CNtBu)]+ slowly isomerizes to the trans from. The solid state structures of the CH3CN, C2H5CN and the trans‐tBuNC complexes were established by X‐ray crystallography. Electrochemical investigations of the nitrile complexes 2 a – d show in addition to a chemically reversible one‐electron oxidation an irrversible reduction step. In CH2Cl2 solution, cis‐ and trans‐[Ru(dppm)2Cl2] have been identified as the final products of the electrochemically induced reaction sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号