首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the chlorides (L2,6‐iPr2Ph)2LnCl (L2,6‐iPr2Ph = [(2,6‐iPr2C6H3)NC(Me)CHC(Me)N(C6H5)]?) with 1 equiv. of NaNH(2,6‐iPr2C6H3) afforded the monoamides (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Y ( 1 ), Yb ( 2 )) in good yields. Anhydrous LnCl3 reacted with 2 equiv. of NaL2,6‐iPr2Ph in THF, followed by treatment with 1 equiv. of NaNH(2,6‐iPr2C6H3), giving the analogues (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Sm ( 3 ), Nd ( 4 )). Two monoamido complexes stabilized by two L2‐Me ligands, (L2‐Me)2LnNH(2,6‐iPr2C6H3) (L2‐Me = [N(2‐MeC6H4)C(Me)]2CH)?; Ln = Y ( 5 ), Yb ( 6 )), were also synthesized by the latter route. Complexes 1 , 2 , 3 , 4 , 5 , 6 were fully characterized, including X‐ray crystal structure analyses. Complexes 1 , 2 , 3 , 4 , 5 , 6 are isostructural. The central metal in each complex is ligated by two β‐diketiminato ligands and one amido group in a distorted trigonal bipyramid. All the complexes were found to be highly active in the ring‐opening polymerization of L‐lactide (L‐LA) and ε‐caprolactone (ε‐CL) to give polymers with relatively narrow molar mass distributions. The activity depends on both the central metal and the ligand (Yb < Y < Sm ≈ Nd and L2‐Me < L2,6‐iPr2Ph). Remarkably, the binary 3/benzyl alcohol (BnOH) system exhibited a striking ‘immortal’ nature and proved able to quantitatively convert 5000 equiv. of L‐LA with up to 100 equiv. of BnOH per metal initiator. All the resulting PLAs showed monomodal, narrow distributions (Mw/Mn = 1.06 ? 1.08), with molar mass (Mn) decreasing proportionally with an increasing amount of BnOH. The binary 4/BnOH system also exhibited an ‘immortal’ nature in the polymerization of ε‐CL in toluene. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The synthesis and molecular structure of the novel phosphonic acid 4‐tert‐Bu‐2,6‐Mes2‐C6H2P(O)(OH)2 ( 1 ) is reported. Compound 1 crystallizes in form of its monohydrate as a hydrogen‐bonded cluster ( 1·H2O )4 comprizing four phosphonic acid molecules (O···O 2.383(3)‐3.006(4) Å). Additionally, sterically hindered terphenyl‐substituted phosphorus compounds of the type 4‐tert‐Bu‐2,6‐Mes2‐C6H2PR(O)(OH) ( 5 , R = H; 7 , R = O2CC6H4‐3‐Cl; 9 , R = OEt) were prepared, which all show dimeric hydrogen‐bonded structures with O···O distances in the range 2.489(2)–2.519(3) Å. Attempts at oxidizing 5 using H2O2, KMnO4, O3, or Me3NO in order to give 1 failed. Crystallization of 5 in the presence of Me3NO gave the novel hydrogen bonded aggregate 4‐tert‐Bu‐2,6‐Mes2‐C6H2PH(O)(OH)·ONMe3 ( 6 ) showing an O–H···O distance of 2.560(4) Å.  相似文献   

3.
Treating [Cp*V(μ‐Cl)2]3 (Cp* = C5Me5) and [(2,6‐i‐Pr2C6H3N)2MoMe2], respectively, with Me3SnF afforded the title compounds [Cp*V(μ‐F)2]4 ( 1 ) and [(2,6‐i‐Pr2C6H3N)2MoF2] · THF ( 2 ). 1 has a tetrameric structure, in which four V atoms can be regarded as being arranged at the vertices of a distorted tetrahedron, with four long edges bridged by one F atom and each of the other two short edges bridged by two F atoms with a mean V–F bond length of 2.00 Å. A hydrolyzed product of 2 , [(2,6‐i‐Pr2C6H3N)6Mo43‐F)2Me2(μ‐O)4] ( 3 ) was characterized by elemental analyses and X‐ray single crystal study. The X‐ray diffraction analysis reveals that 3 has a unique tetranuclear structure, containing two five and two six coordinated Mo atoms connecting each other by four μ‐O and two μ3‐F atoms. The geometries around the two Mo atoms can be described having distorted trigonal bipyramidal and distorted octahedral coordination spheres, respectively. The Mo–(μ‐O) bond lengths are 1.813 Å (average) for five coordinated Mo atoms and 2.030 Å (average) for those of six coordinated, respectively, indicating an additional π bonding between five coordinated Mo atoms and the μ‐O atoms. The Mo–(μ3‐F) distances range from 2.291 to 2.352 Å.  相似文献   

4.
The reaction of [(ArN)2MoCl2] · DME (Ar = 2,6‐i‐Pr2C6H3) ( 1 ) with lithium amidinates or guanidinates resulted in molybdenum(VI) complexes [(ArN)2MoCl{N(R1)C(R2)N(R1)}] (R1 = Cy (cyclohexyl), R2 = Me ( 2 ); R1 = Cy, R2 = N(i‐Pr)2 ( 3 ); R1 = Cy, R2 = N(SiMe3)2 ( 4 ); R1 = SiMe3, R2 = C6H5 ( 5 )) with five coordinated molybdenum atoms. Methylation of these compounds was exemplified by the reactions of 2 and 3 with MeLi affording the corresponding methylates [(ArN)2MoMe{N(R1)C(R2)N(R1)}] (R1 = Cy, R2 = Me ( 6 ); R1 = Cy, R2 = N(i‐Pr)2 ( 7 )). The analogous reaction of 1 with bulky [N(SiMe3)C(C6H5)C(SiMe3)2]Li · THF did not give the corresponding metathesis product, but a Schiff base adduct [(ArN)2MoCl2] · [NH=C(C6H5)CH(SiMe3)2] ( 8 ) in low yield. The molecular structures of 7 and 8 are established by the X‐ray single crystal structural analysis.  相似文献   

5.
A new family of t‐butyl substituted chromium(III) chloride complexes ( Cr1 – Cr6 ), bearing 2‐(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridine (aryl = 2,6‐Me2C6H3 Cr1 , 2,6‐Et2C6H3 Cr2 , 2,6‐i‐Pr2C6H3 Cr3 , 2,4,6‐Me3C6H2 Cr4 and 2,6‐Et2‐4‐MeC6H2 Cr5 ) or 2,6‐bis(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)pyridine ( Cr6 ), has been synthesized by the reaction of CrCl3·6H2O in good yield with the corresponding ligands ( L1 – L6 ), respectively. The molecular structures of Cr2 and Cr6 were characterized by X‐ray diffraction highlighted a distorted octahedral geometry with the coordinated N,N,N ligand and three bonded chlorides around the metal center. On activation with modified methylaluminoxane or triisobutyl aluminum, most of the chromium precatalysts exhibit good activities toward ethylene polymerization and produce linear polyethylenes with high‐molecular weight. In addition, an in‐depth catalytic evaluation of Cr2 was conducted to investigate how cocatalyst type and amount, reaction temperature, and run time affect the catalytic activities and polymer properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1049–1058  相似文献   

6.
Use of the very bulky amidinate ligand [tBuC(NAr)2](= Piso, Ar = C6H3iPr2–2,6) allowed the synthesis and structural characterization of the chloro‐functional complex (Piso)2CeCl ( 1 ). Complex 1 represents a rare example of an unsolvated bis(amidinato) lanthanide chloride. An X‐ray diffraction study confirmed the presence of a pentacoordinate cerium(III) complex.  相似文献   

7.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

8.
The reactions of K[(2,6‐iPr2C6H3‐O)2POO] either with LaCl3(H2O)7 or with Nd(NO3)3(H2O)6 in a 3:1 molar ratio, followed by vacuum drying and recrystallization from alkanes, have led to the formation of diaquapentakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dilanthanum hexane disolvate, [La2(C24H34O4P)5(OH)(H2O)2]·2C6H14, ( 1 )·2(hexane), and tetraaquatetrakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dineodymium bis(2,6‐diisopropylphenyl) phosphate heptane disolvate, [Nd2(C24H34O4P)4(OH)(H2O)4]·2C6H14, ( 2 )·2(heptane). The compounds crystalize in the P21/n and P space groups, respectively. The diaryl‐substituted organophosphate ligand exhibits three different coordination modes, viz. κ2O,O′‐terminal [in ( 1 ) and ( 2 )], κO‐terminal [in ( 1 )] and μ2‐κ1O1O′‐bridging [in ( 1 ) and ( 2 )]. Binuclear structures ( 1 ) and ( 2 ) are similar and have the same unique Ln2(μ‐OH)(μ‐OPO)2 core. The structure of ( 2 ) consists of an [Nd2{(2,6‐iPr2C6H3‐O)2POO}4(OH)(H2O)4]+ cation and a [(2,6‐iPr2C6H3‐O)2POO] anion, which are bound via four intermolecular O—H…O hydrogen bonds. The molecular structure of ( 1 ) displays two O—H…O hydrogen bonds between OH/H2O ligands and a κ1O‐terminal organophosphate ligand, which resembles, to some extent, the `free' [(2,6‐iPr2C6H3‐O)2POO] anion in ( 2 ). NMR studies have shown that the formation of ( 1 ) undoubtedly occurs due to intramolecular hydrolysis during vacuum drying of the aqueous La tris(phosphate) complex. Catalytic experiments have demonstrated that the presence of the coordinated hydroxide anion and water molecules in precatalyst ( 2 ) substantially lowered the catalytic activity of the system prepared from ( 2 ) in butadiene and isoprene polymerization compared to the catalytic system based on the neodymium tris[bis(2,6‐diisopropylphenyl) phosphate] complex, which contains neither OH nor H2O ligands.  相似文献   

9.
Synthesis, Structure, and Properties of [nacnac]MX3 Compounds (M = Ge, Sn; X = Cl, Br, I) Reactions of [nacnac]Li [(2,6‐iPr2C6H3)NC(Me)C(H)C(Me)N(2,6‐iPr2C6H3)]Li ( 1 ) with SnX4 (X = Cl, Br, I) and GeCl4 in Et2O resulted in metallacyclic compounds with different structural moieties. In the [nacnac]SnX3 compounds (X = Cl 2 , Br 3 , I 4 ) the tin atom is five coordinated and part of a six‐membered ring. The Sn–N‐bond length of 3 is 2.163(4) Å and 2.176(5) Å of 4 . The five coordinated germanium of the [nacnac]GeCl3 compound 5 shows in addition to the three chlorine atoms further bonds to a carbon and to a nitrogen atom. In contrast to the known compounds with the [nacnac] ligand the afore mentioned reaction creates a carbon–metal‐bond (1.971(3) Å) forming a four‐membered ring. The Ge–N bond length (2.419(2) Å) indicates the formation of a weakly coordinating bond.  相似文献   

10.
Reaction Behaviour of Copper(I) and Copper(II) Salts Towards P(C6H4CH2NMe2‐2)3 ‐ the Solid‐State Structures of {[P(C6H4CH2NMe2‐2)3]CuOClO3}ClO4, {[P(C6H4CH2NMe2‐2)3]Cu}ClO4, [P(C6H4CH2NMe2‐2)3]CuONO2 and [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 The reaction behaviour of P(C6H4CH2NMe2‐2)3 ( 1 ) towards different copper(II) and copper(I) salts of the type CuX2 ( 2a : X = BF4, 2b : X = PF6, 2c : X = ClO4, 2d : X = NO3, 2e : X = Cl, 2f : X = Br, 13 : X = O2CMe) and CuX ( 5a : X = ClO4, 5b : X = NO3, 5c : X = Cl, 5d : X = Br) is discussed. Depending on X, the transition metal complexes [P(C6H4CH2NMe2‐2)3Cu]X2 ( 3a : X = BF4, 3b : X = PF6), {[P(C6H4CH2NMe2‐2)3]CuX}X ( 4 : X = ClO4, 11a : X = Cl, 11b : X = Br, 14 : X = O2CMe), {[P(C6H4CH2NMe2‐2)3]Cu}ClO4 ( 6 ), [P(C6H4CH2NMe2‐2)3]CuX ( 7a : X = Cl, 7b : X = Br, 10 : X = ONO2), [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 ( 9 ) and [P(C6H4CH2NMe2‐2)3]CuCl}CuCl2 ( 12 ) are accessible. While in 3a , 3b and 6 the phosphane 1 preferentially acts as tetrapodale ligand, in all other species only the phosphorus atom and two of the three C6H4CH2NMe2 side‐arms are datively‐bound to the appropriate copper ion. In solution a dynamic behaviour of the latter species is observed. Due to the coordination ability of X in 3a , 3b and 6 non‐coordinating anions X are present. However, in 4 one of the two perchlorate ions forms a dative oxygen‐copper bond and the second perchlorate ion acts as counter ion to {[P(C6H4CH2NMe2‐2)3]CuOClO3}+. In 7 , 9 and 10 the fragments X (X = Cl, Br, ONO2) form a σ‐bond with the copper(I) ion. The acetate moiety in 14 acts as chelating ligand as it could be shown by IR‐spectroscopic studies. All newly synthesised cationic and neutral copper(I) and copper(II) complexes are representing stable species. Redox processes are involved in the formation of 9 and 12 by reacting 1 with 2 . The solid‐state structures of 4 , 6 , 9 and 10 are reported. In the latter complexes the copper(II) ( 4 ) or copper(I) ion ( 6 , 9 , 10 ) possesses the coordination number 4. This is achieved by the formation of a phosphorus‐ and two nitrogen‐copper‐ ( 4 , 9 , 10 ) or three ( 6 ) nitrogen‐copper dative bonds and a coordinating ( 4 ) or σ‐binding ( 9 , 10 ) ligand X. In 6 all three nitrogen and the phosphorus atoms are coordinatively bound to copper, while X acts as non‐coordinating counter‐ion. Based on this, the respective copper ion occupies a distorted tetrahedral coordination sphere. While in 4 and 10 a free, neutral Me2NCH2 side‐arm is present, which rapidly exchanges in solution with the coordinatively‐bound Me2NCH2 fragments, this unit is protonated in 10 . NO3 acts as counter ion to the CH2NMe2H+ moiety. In all structural characterized complexes 6‐membered boat‐like CuPNC3 cycles are present.  相似文献   

11.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

12.
In a two-step elimination reaction the molecular Al-F-N cage compound 1 is synthesized from (2,6-iPr2C6H3)NH2 (ArNH2) and Me2AlF under methane evolution. Compound 1 was characterized by means of X-ray structure analysis and can be regarded as a precursor for ternary Al-F-N systems.  相似文献   

13.
A “one-legged thallium” is observed in the arylthallium(I ) compound 2,6-Trip2C6H3Tl (Trip=2,4,6-iPr3C6H2), which was synthesized from the corresponding organolithium compound and thallium chloride. X-ray structure analysis reveals that 2,6-Trip2C6H3Tl is monomeric in the solid state and contains a singly coordinated thallium atom (see space-filling model on the right).  相似文献   

14.
Single‐crystal X‐ray diffraction analysis of [2,6‐(Me2NCH2)2C6H3]2SnF2 reveals that only one of the two dimethylaminomethyl groups of each pincer‐type ligands [2,6‐(CH2NMe2)2C6H3]? is coordinated to the tin atom at Sn‐N distances of 2.576(2) and 2.470(2) Å, inducing chirality of the latter. The tin atom exhibits a distorted octahedral trans(C,C)cis(N,N)cis(F,F) configuration. Extensive intra‐ and intermolecular C‐H···F hydrogen bonding is observed with the latter giving rise to formation of polymeric chains.  相似文献   

15.
[Cp°MoCl4] (Cp° = C5EtMe4) reacts with primary phosphines PH2R to give the paramagnetic phosphine complexes [Cp°MoCl4(PH2R)] [Cp° = C5EtMe4, R = But ( 1 ), 1‐Ad (1‐Ad = 1‐adamantyl; 2 ), Cy ( 3 ), Ph ( 4 ), Mes (Mes = 2, 4, 6‐Me3C6H2; 5 ), Tipp (Tipp = 2, 4, 6‐Pri3C6H2; 6 )]. 1 — 6 were characterized spectroscopically (IR, MS), and X‐ray crystal structures were determined for 1 — 4 and 6 . EPR investigations in liquid and frozen solution confirmed the presence of MoV species, and the data were used to analyze the spin‐density distribution in the first coordination sphere. Complexes 3 and 4 react with two equivalents of NEt3 with formation of [Cp°MoCl23‐P4Cy4H)] ( 7 ) and [Cp°2Mo2(μ‐Cl)2(μ‐P4Ph4)] ( 8 ), respectively, in low yield. Complexes 7 and 8 were characterized by X‐ray crystallography.  相似文献   

16.
Insertion and Substitution Reaction of Methyl Formate with [Cp′2ZrCl(PHTipp)] – Molecular Structure of meso‐trans ‐[Cp′2ZrCl{OCH(PHTipp)2}] (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) [Cp′2ZrCl(PHTipp)] ( 1 ) (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) reacts with methyl formate with insertion and substitution to give [Cp′2ZrCl{OCH(PHTipp)2}] ( 2 ). 2 was characterized spectroscopically (1H, 31P NMR, IR, MS) and by X‐ray structure determination. Only the meso‐trans isomer is present in the solid state.  相似文献   

17.
The bis(arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐NO2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N′‐2,6‐bis{di(4‐fluorophenyl)methyl}‐4‐nitrophenyl group, have been synthesized by two successive condensation reactions from 2,6‐diacetylpyridine. Their subsequent treatment with anhydrous cobalt (II) chloride gave the corresponding N,N,N′‐CoCl2 chelates, Co1 – Co5 , in excellent yield. All five complexes have been characterized by 1H/19F NMR and IR spectroscopy as well as by elemental analysis. In addition, the molecular structures of Co1 and Co3 have been determined and help to emphasize the differences in steric properties imposed by the inequivalent N‐aryl groups; distorted square pyramidal geometries are adopted by each complex. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), precatalyts Co1 – Co5 collectively exhibited very high activities for ethylene polymerization with 2,6‐dimethyl‐substituted Co1 the most active (up to 1.1 × 107 g (PE) mol?1 (Co) h?1); the MAO systems were generally more productive. Linear polyethylenes of exceptionally high molecular weight (Mw up to 1.3 × 106 g mol?1) were obtained in all cases with the range in dispersities exhibited using MAO as co‐catalyst noticeably narrower than with MMAO [Mw/Mn: 3.55–4.77 ( Co1 – Co5 /MAO) vs. 2.85–12.85 ( Co1 – Co5 /MMAO)]. Significantly, the molecular weights of the polymers generated using this class of cobalt catalyst are higher than any literature values reported to date using related N,N,N‐bis (arylimino)pyridine‐cobalt catalysts.  相似文献   

18.
Owing to steric congestion in i‐Pr2(2,4,6‐i‐Pr3C6H2)SiF, the geometry at the Si atom deviates slightly from ideal tetrahedral geometry with an increased C? Si? C angle of 119.02(9)° and elongated Si? C and Si? F bond distances. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
We report here the synthesis of new C,N‐chelated chlorostannylenes and germylenes L3MCl (M=Sn( 1 ), Ge ( 2 )) and L4MCl (M=Sn( 3 ), Ge ( 4 )) containing sterically demanding C,N‐chelating ligands L3, 4 (L3=[2,4‐di‐tBu‐6‐(Et2NCH2)C6H2]?; L4=[2,4‐di‐tBu‐6‐{(C6H3‐2′,6′‐iPr2)N=CH}C6H2]?). Reductions of 1 – 4 yielded three‐coordinate C,N‐chelated distannynes and digermynes [L3, 4M ]2 for the first time ( 5 : L3, M=Sn, 6 : L3, M=Ge, 7 : L4, M=Sn, 8 : L4, M=Ge). For comparison, the four‐coordinate distannyne [L5Sn]2 ( 10 ) stabilized by N,C,N‐chelate L5 (L5=[2,6‐{(C6H3‐2′,6′‐Me2)N?CH}2C6H3]?) was prepared by the reduction of chlorostannylene L5SnCl ( 9 ). Hence, we highlight the role of donor‐driven stabilization of tetrynes. Compounds 1 – 10 were characterized by means of elemental analysis, NMR spectroscopy, and in the case of 1 , 2 , 5 – 7 , and 10 , also by single‐crystal X‐ray diffraction analysis. The bonding situation in either three‐ or four‐coordinate distannynes 5 , 7 , and 10 was evaluated by DFT calculations. DFT calculations were also used to compare the nature of the metal–metal bond in three‐coordinate C,N‐chelating distannyne [L3Sn]2 ( 5 ) and related digermyme [L3Ge]2 ( 6 ).  相似文献   

20.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号