首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics and mechanism for the reaction of NH2 with HONO have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the CCSD/6‐311++G(d, p) level. The reaction producing the primary products, NH3 + NO2, takes place via precomplexes, H2N???c‐HONO or H2N???t‐HONO with binding energies, 5.0 or 5.9 kcal/mol, respectively. The rate constants for the major reaction channels in the temperature range of 300–3000 K are predicted by variational transition state theory or Rice–Ramsperger–Kassel–Marcus theory depending on the mechanism involved. The total rate constant can be represented by ktotal = 1.69 × 10?20 × T2.34 exp(1612/T) cm3 molecule?1 s?1 at T = 300–650 K and 8.04 × 10?22 × T3.36 exp(2303/T) cm3 molecule?1 s?1 at T = 650–3000 K. The branching ratios of the major channels are predicted: k1 + k3 producing NH3 + NO2 accounts for 1.00–0.98 in the temperature range 300–3000 K and k2 producing OH + H2NNO accounts for 0.02 at T > 2500 K. The predicted rate constant for the reverse reaction, NH3 + NO2 → NH2 + HONO represented by 8.00 × 10?26 × T4.25 exp(?11,560/T) cm3 molecule?1 s?1, is in good agreement with the experimental data. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 678–688, 2009  相似文献   

2.
Studies of the stoichiometry and kinetics of the reaction between hydroxylamine and iodine, previously studied in media below pH 3, have been extended to pH 5.5. The stoichiometry over the pH range 3.4–5.5 is 2NH2OH + 2I2 = N2O + 4I? + H2O + 4H+. Since the reaction is first-order in [I2] + [I3?], the specific rate law, k0, is k0 = (k1 + k2/[H+]) {[NH3OH+]0/(1 + Kp[H+])} {1/(1 + KI[I?])}, where [NH3OH+]0 is total initial hydroxylamine concentration, and k1, k2, Kp, and KI are (6.5 ± 0.6) × 105 M?1 s?1, (5.0 ± 0.5) s?1, 1 × 106 M?1, and 725 M?1, respectively. A mechanism taking into account unprotonated hydroxylamine (NH2OH) and molecular iodine (I2) as reactive species, with intermediates NH2OI2?, HNO, NH2O, and I2?, is proposed.  相似文献   

3.
Laser flash photolysis combined with competition kinetics with SCN? as the reference substance has been used to determine the rate constants of OH radicals with three fluorinated and three chlorinated ethanols in water as a function of temperature. The following Arrhenius expressions have been obtained for the reactions of OH radicals with (1) 2‐fluoroethanol, k1(T) = (5.7 ± 0.8) × 1011 exp((?2047 ± 1202)/T) M?1 s?1, (2) 2,2‐difluoroethanol, k2(T) = (4.5 ± 0.5) × 109 exp((?855 ± 796)/T) M?1 s?1, (3) 2,2,2‐trifluoroethanol, k3(T) = (2.0 ± 0.1) × 1011 exp((?2400 ± 790)/T) M?1 s?1, (4) 2‐chloroethanol, k4(T) = (3.0 ± 0.2) × 1010 exp((?1067 ± 440)/T) M?1 s?1, (5) 2, 2‐dichloroethanol, k5(T) = (2.1 ± 0.2) × 1010 exp((?1179 ± 517)/T) M?1 s?1, and (6) 2,2,2‐trichloroethanol, k6(T) = (1.6 ± 0.1) × 1010 exp((?1237 ± 550)/T) M?1 s?1. All experiments were carried out at temperatures between 288 and 328 K and at pH = 5.5–6.5. This set of compounds has been chosen for a detailed study because of their possible environmental impact as alternatives to chlorofluorocarbon and hydrogen‐containing chlorofluorocarbon compounds in the case of the fluorinated alcohols and due to the demonstrated toxicity when chlorinated alcohols are considered. The observed rate constants and derived activation energies of the reactions are correlated with the corresponding bond dissociation energy (BDE) and ionization potential (IP), where the BDEs and IPs of the chlorinated ethanols have been calculated using quantum mechanical calculations. The errors stated in this study are statistical errors for a confidence interval of 95%. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 174–188, 2008  相似文献   

4.
The kinetics of the reaction between NO2 and ([14]aneN4)Ni2+ were determined by laser flash photolysis. The NO2 was generated in two independent reactions, one of which is based on the photochemistry of (NH3)5CoNO22+, and the other on the photochemistry of HNO2/NO2?. The results from both sets of experiments yielded a consistent value for the rate constant, k1 = 1.2 × 108 M?1 s?1 in aqueous solutions at pH 1–4. There was no evidence for the reverse reaction. NO2 reacts with Feaq2+ more slowly, kFe ~ 2 × 105 M?1 s?1. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 278–281, 2002  相似文献   

5.
The kinetics and mechanism for the reaction of NH2 with HONO2 have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the B3LYP/6‐311+G(3df, 2p) level. The reaction producing the primary products, NH3 + NO3, takes place via a precursor complex, H2N…HONO2 with an 8.4‐kcal/mol binding energy. The rate constants for major product channels in the temperature range 200–3000 K are predicted by variational transition state or variational Rice–Ramsperger–Kassel–Marcus theory. The results show that the reaction has a noticeable pressure dependence at T < 900 K. The total rate constants at 760 Torr Ar‐pressure can be represented by ktotal = 1.71 × 10?3 × T?3.85 exp(?96/T) cm3 molecule?1 s?1 at T = 200–550 K, 5.11 × 10?23 × T+3.22 exp(70/T) cm3 molecule?1 s?1 at T = 550–3000 K. The branching ratios of primary channels at 760 Torr Ar‐pressure are predicted: k1 producing NH3 + NO3 accounts for 1.00–0.99 in the temperature range of 200–3000 K and k2 + k3 producing H2NO + HONO accounts for less than 0.01 when temperature is more than 2600 K. The reverse reaction, NH3 + NO3 → NH2 + HONO2 shows relatively weak pressure dependence at P < 100 Torr and T < 600 K due to its precursor complex, NH3…O3N with a lower binding energy of 1.8 kcal/mol. The predicted rate constants can be represented by k?1 = 6.70 × 10?24 × T+3.58 exp(?850/T) cm3 molecule?1 s?1 at T = 200–3000 K and 760 Torr N2 pressure, where the predicted rate at T = 298 K, 2.8 × 10?16 cm3 molecule?1 s?1 is in good agreement with the experimental data. The NH3 + NO3 formation rate constant was found to be a factor of 4 smaller than that of the reaction OH + HONO2 producing the H2O + NO3 because of the lower barrier for the transition state for the OH + HONO2. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 69–78, 2010  相似文献   

6.
The kinetics of oxidation of tartaric acid (TAR) by peroxomonosulfate (PMS) in the presence of Cu(II) and Ni(II) ions was studied in the pH range 4.05–5.20 and also in alkaline medium (pH ~12.7). The rate was calculated by measuring the [PMS] at various time intervals. The metal ions concentration range used in the kinetic studies was 2.50 × 10?5 to 1.00 × 10?4 M [Cu(II)], 2.50 × 10?4 to 2.00 × 10?3M [Ni(II)], 0.05 to 0.10 M [TAR], and µ = 0.15 M. The metal(II) tartarates, not TAR/tartarate, are oxidized by PMS. The oxidation of copper(II) tartarate at the acidic pH shows an appreciable induction period, usually 30–60 min, as in classical autocatalysis reaction. The induction period in nickel(II) tartarate is small. Analysis of the [PMS]–time profile shows that the reactions proceed through autocatalysis. In alkaline medium, the Cu(II) tartarate–PMS reaction involves autocatalysis whereas Ni(II) tartarate obeys simple first‐order kinetics with respect to [PMS]. The calculated rate constants for the initial oxidation (k1) and catalyzed oxidation (k2) at [TAR] = 0.05 M, pH 4.05, and 31°C are Cu(II) (1.00 × 10?4 M): k1 = 4.12 × 10?6 s?1, k2 = 7.76 × 10?1 M?1s?1 and Ni(II) (1.00 × 10?3 M): k1 = 5.80 × 10?5 s?1, k2 = 8.11 × 10?2 M?1 s?1. The results suggest that the initial reaction is the oxidative decarboxylation of the tartarate to an aldehyde. The aldehyde intermediate may react with the alpha hydroxyl group of the tartarate to give a hemi acetal, which may be responsible for the autocatalysis. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 620–630, 2011  相似文献   

7.
The Co(NH3)5OH23+ ion reacts with malonate to form Co(NH3)5O2CCH2CO2H2+ or Co(NH3)5O2CCH2CO2+, depending on the pH of the reaction solution. The kinetics of this anation reaction have been studied as a function of [H+] for the acidity range 1.5 ≤ pH ≤ 6.0 in the temperature range of 60 to 80°C, the [total malonate] ≤ 0.5 M, and the ionic strength 1.0M. The anation by malonic acid follows second-order kinetics, the rate constant being 8.0 × 10?5 M?1·sec?1 at 70°C, and the anations by bimalonate (Q1, k1) and malonate ion (Q2, k2) are consistent with an Id mechanism. Typical values at 70°C for the ion pair formation constants are Q1 = 1.3, Q2 = 5.4M?1; and for the interchange rate constants k1 = 5.3 × 10?4; k2 = 7.3 × 10?4 sec?1. The activation parameters for the various rate constants are reported and the results discussed with reference to previously reported data for similar systems.  相似文献   

8.
The absolute rate constants for the reactions of NH2 radicals with ethyl, isopropyl, and t-butyl radicals have been measured at 298 K, using a flash photolysis–laser resonance absorption method. Radicals were generated by flashing ammonia in the presence of an olefin. A new measurement of the NH2 extinction coefficient and oscillator strength at 597.73 nm was performed. The decay curves were simulated by adjusting the rate constants of both the reaction of NH2 with the alkyl radical and the mutual interactions of alkyl radicals. The results are k(NH2 + alkyl) = 2.5 (±0.5), 2.0 (±0.4), and 2.5 (±0.5) × 1010 M?1·s?1 for ethyl, isopropyl, and t-butyl radicals, respectively. The best simulations were obtained when taking k(alkyl + alkyl) = 1.2, 0.6, and 0.65 × 1010M?1·s?1 for ethyl, isopropyl, and t-butyl radicals, respectively, in good agreement with literature values.  相似文献   

9.
The reduction of Fe(CN)5L2? (L = pyridine, isonicotinamide, 4,4′‐bipyridine) complexes by ascorbic acid has been subjected to a detailed kinetic study in the range of pH 1–7.5. The rate law of the reaction is interpreted as a rate determining reaction between Fe(III) complexes and the ascorbic acid in the form of H2A(k0), HA?(k1), and A2? (k2), depending on the pH of the solution, followed by a rapid scavenge of the ascorbic acid radicals by Fe(III) complex. With given Ka1 and Ka2, the rate constants are k0 = 1.8, 7.0, and 4.4 M?1 s?1; k1 = 2.4 × 103, 5.8 × 103, and 5.3 × 103 M?1 s?1; k2 = 6.5 × 108, 8.8 × 108, and 7.9 × 108 M?1 s?1 for L = py, isn, and bpy, respectively, at μ = 0.10 M HClO4/LiClO4, T = 25°C. The kinetic results are compatible with the Marcus prediction. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 126–133, 2005  相似文献   

10.
The kinetics and mechanism for the reaction of NH2 with HNO have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the CCSD/6‐311++G(d, p) level. The major products of this reaction were found to be NH3 + NO formed by H‐abstraction via a long‐lived H2N???HNO complex and the H2NN(H)O radical intermediate formed by association with 26.9 kcal/mol binding energy. The rate constants for formation of primary products in the temperature range of 300–3000 K were predicted by variational transition state or RRKM theories. The predicted total rate constants at the 760 Torr Ar pressure can be represented by ktotal = 3.83 × 10?20 × T+2.47exp(1450/T) at T = 300–600 K; 2.58 × 10?22 × T+3.15 exp(1831/T) cm3 molecule?1 s?1 at T = 600?3000 K. The branching ratios of major channels at 760 Torr Ar pressure are predicted: k1 + k3 + k4 producing NH3 + NO accounts for 0.59–0.90 at T = 300–3000 K peaking around 1000 K, k2 accounts for 0.41–0.03 at T = 300–600 K decreasing with temperature, and k5 accounts for 0.07–0.27 at T > 600 K increasing gradually with temperature. The NH3 + NO formation rate constant was found to be a factor of 3–10 smaller than that of the isoelectronic reaction CH3 + HNO producing CH4 + NO, which has been shown to take place by barrierless H‐abstraction without involving a hydrogen‐bonding complex as in the NH2 case. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 677–677, 2009  相似文献   

11.
The kinetics of ethylene/propylene copolymerization catalyzed by (ethylene bis (indeyl)-ZrCI2/methylaluminoxane) has been investigated. Radiolabeling found about 80% of the Zr to be catalytically active. The estimates for rate constants at 50°C are k11 = 1104 (Ms)?1, k12 = 430 (Ms)?1, k22 = 396 (Ms)?1,k21 = 1020 (Ms)?1, and kAtr,1 + kAtr.2 = 1.9 × 10?3 s?1. Substitution of trimethylaluminum for methylaluminoxane resulted in proportionate decrease in polymerization rate. The molecular weight of the copolymer is slightly increased by loweing the [Al]/[Zr] ratio, or addition of Lewis base modifier but at the expense of lowered catalytic activity and increase in ethylene content in the copolymer. Lowering of the polymerization temperature to 0°C resulted in a doubling of molecular weight but suffered 10-fold reduction in polymerization activity and increase of ethylene in copolymer.  相似文献   

12.
The absolute rate constant of the reaction of NH2 with NO2 has been measured using a flash-photolysis laser resonance-fluorescence technique. The value obtained at room temperature is k1 = 2.3 (± 0.2) × 10?11 cm3 molecule ?1 s?1. A negative temperature coefficient has been found between 298 and 505 K for this reaction, k1 = 3.8 × 10?8 × T?1.30 cm3 molecule?1 s?1. It is thought that this is the major reaction of NH2 in the troposphere.  相似文献   

13.
Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl + CH2F2) = 1.19 × 10?17 T2 exp(?1023/T) cm3 molecule?1 s?1 (253–553 K), k(Cl + CH3CCl3) = 2.41 × 10?12 exp(?1630/T) cm3 molecule?1 s?1 (253–313 K), and k(Cl + CF3CFH2) = 1.27 × 10?12 exp(?2019/T) cm3 molecule?1 s?1 (253–313 K). Results are discussed with respect to the literature data. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 401–406, 2009  相似文献   

14.
Kinetics for the reaction of OH radical with CH2O has been studied by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on the geometries optimized at the B3LYP/6‐311+G(3df, 2p) and CCSD/6‐311++G(d,p) levels. The rate constant for the reaction has been computed in the temperature range 200–3000 K by variational transition state theory including the significant effect of the multiple reflections above the OH··OCH2 complex. The predicted results can be represented by the expressions k1 = 2.45 × 10‐21 T2.98 exp (1750/T) cm3 mol?1 s?1 (200–400 K) and 3.22 × 10‐18 T2.11 exp(849/T) cm3 mol?1 s?1 (400–3000 K) for the H‐abstraction process and k2 = 1.05 × 10‐17 T1.63 exp(?2156/T) cm3 mol?1 s?1 in the temperature range of 200–3000 K for the HO‐addition process producing the OCH2OH radical. The predicted total rate constants (k1 + k2) can reproduce closely the recommended kinetic data for OH + CH2O over the entire range of temperature studied. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 322–326, 2006  相似文献   

15.
Rate coefficients for the reaction of the hydroxyl radical with CH3OCH2F (HFE‐161) were computed using transition state theory coupled with ab initio methods, viz., MP2, G3MP2, and G3B3 theories in the temperature range of 200–400 K. Structures of the reactants and transition states (TSs) were optimized at MP2(FULL) and B3LYP level of theories with 6‐31G* and 6‐311++G** basis sets. The potential energy surface was scanned at both the level of theories. Five different TSs were identified for each rotamer. Calculations of Intrinsic reaction coordinates were performed to confirm the existence of all the TSs. The kinetic parameters due to all different TSs are reported in this article. The rate coefficients for the title reaction were computed to be k = (9 ± 1.08) × 10?13 exp [?(1,713 ± 33)/T] cm3 molecule?1 s?1 at MP2, k = (7.36 ± 0.42) × 10?13 exp [?(198 ± 16)/T] cm3 molecule?1 s?1 at G3MP2 and k = (5.36 ± 1.57) × 10?13 exp [?(412 ± 81)/T] cm3 molecule?1 s?1 at G3B3 theories. The atmospheric lifetimes of CH3OCH2F at MP2, G3MP2, and G3B3 level of theories were estimated to be 20, 0.1, and 0.3 years, respectively. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

16.
A new couloamperometric apparatus has been designed to extend the range of this kinetic technique to the measurement of very high rate constants, 108M?1s?1, by using TFCR-EXSEL conditions (TFCR—very low reactant concentration; EXSEL—salt excess), which give half-lives of a few seconds for very fast second-order reactions. Very low faradaic currents, in the nanoampere range for halogens, corresponding to very low reactant concentrations of 10?8–10?9M, are measured selectively by compensating the eddy currents, principally the residual and the induced currents. When the electroactive species is bromine, the concentration is demonstrated to be linearly related to the limiting reduction current in the very low concentration range. The upper limit of this technique for bromination is at present 3 × 108M?1s?1. The method is applied to the kinetic study of highly reactive enol ethers EtO-C(R) = CH-R′, where R and R′ are H or Me. A value of 2.2 × 108M?1s?1 is obtained for k, the rate constant for free bromine addition to EtO-CH = CH2, by extrapolating the kinetic bromide ion effects to [Br?] = 0. An α-methyl effect (kα-Me/kH)EtO of 15 is found; this is a small decrease in the methyl effect compared to the marked increase in the double bond reactivity. For the enol acetate MeCOO-CH = CH2, whose rate constant is 6 × 102M?1s?1, (kα-Me/kH)OCOMe is 21. The dependence of substituent effects on reactivity is discussed in terms of the Hammond effect on the transition state position and of charge delocalization by group G of olefins G-CH = CH2.  相似文献   

17.
By allowing dimethyl peroxide (10?4M) to decompose in the presence of nitric oxide (4.5 × 10?5M), nitrogen dioxide (6.5 × 10?5M) and carbon tetrafluoride (500 Torr), it has been shown that the ratio k2/k2′ = 2.03 ± 0.47: CH3O + NO → CH3ONO (reaction 2) and CH3O + NO2 → CH3ONO2 (reaction 2′). Deviations from this value in this and previous work is ascribed to the pressure dependence of both these reactions and heterogeneity in reaction (2). In contrast no heterogeneous effects were found for reaction (2′) making it an ideal reference reaction for studying other reactions of the methoxy radical. We conclude that the ratio k2/k2′ is independent of temperature and from k1 = 1010.2±0.4M?1 sec?1 we calculate that k2′ = 109.9±0.4M?1 sec?1. Both k2 and k2′ are pressure dependent but have reached their limiting high-pressure values in the presence of 500 Torr of carbon tetrafluoride. Preliminary results show that k4 = 10.9.0±0.6 10?4.5±1.1M?1 sec?1 (Θ = 2.303RT kcal mole?1) and by k4 = 108.6±0.6 10?2.4±1.1M?1 sec?1: CH3O + O2 → CH2O + HO2 (reaction 4) and CH3O + t-BuH → CH3OH + (t-Bu) (reaction 4′).  相似文献   

18.
J.G. Leipoldt  H. Meyer 《Polyhedron》1985,4(9):1527-1531
The reaction of Cl?, Br?, I?, Co(CN)63? and NCS? with meso-tetrakis (p-trimethylammoniumphenyl)porphinatodiaquorhodate(III), [RhTAPP(H2O)2]5+, has been studied at 15, 25 and 35°C in 0.1 M [H+] with μ = 1.00 M (NaNO3). The value of the acidity constant, Kal, at 25°C is 4.39 × 10?9 M. The reactions are first order in anion concentration up to 0.9 M. The values of the stability constants, K1, and the second order rate constants, k1, for the reaction with Cl?, Br?, I?, Co(CN)63? and NCS? are respectively 0.23 M?1 and 2.5 × 10?3 M?1 s?1, 1.1 M?1 and 6.92 × 10?3 M?1 s?1, 40.0 M?1 and 17.0 × 10?3 M?1 s?1, 550 M?1 and 20.0 × 10?3 M?1 s?1, 3400 M?1 and 20.9 × 10?3 M?1 s?1. The porphine greatly labilizes the Rh(III). There has been about a 500-fold increase in the rate constant for substitution compared to that of [Rh(NH3)5H2O]3+. The substitution rates are however about the same as for [Rh(TPPS)(H2O)2]3?, indicating that the overall charge on the complex plays only a minor role. The kinetic results indicate that dissociative activation is occurring in these reactions.  相似文献   

19.
《Chemical physics letters》1986,127(4):347-353
Infrared multiphoton photooxidation of NH2D in NH3 mixtures was observed to produce exclusively HDO, suggesting a single step deuterium separation efficiency of [D2O]/([D20]+[H2O]) ⩾ 50% which is significantly higher than that of the theoretical value, 33%. The results are explained by the large rate differences in the radical scavenging steps, i.e. k(D+O2) = 2.2 × 109M−1 s−1, k(NH2+O2) ⩽ 5 × 106 M−1 s−1 and k(NH2+NH2)=1.6 × 1010 M−1 s−1. With Ti solid powder as a catalyst, we observed that the formation yields of HDO are at least three to four times higher than those without a catalyst.  相似文献   

20.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号