首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly[9‐(heptadecan‐9‐yl)‐9H‐carbazole‐2,7‐diyl‐alt‐(5,6‐bis‐(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzo‐[1,2,5]‐thia‐diazole)‐5,5‐diyl] compositions containing various ratios of 3,6‐carbazole was synthesized for testing in a polymer solar cell. An appropriate amount of 3,6‐carbazole units incorporated into the copolymer improved intermolecular charge transport, whereas excess amount of 3,6‐carbazole units temporarily seized on the partial negative charge generated in the conjugation breaks. We extensively studied the effects of the incorporated 3,6‐carbazole units on the intermolecular interactions, which can affect nongeminated recombination in bulk heterojunction‐polymer solar cells. These properties were investigated using photocurrent‐ and light intensity‐dependent measurements and electrochemical impedance spectroscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2047–2056  相似文献   

2.
An investigation into the preparation of poly(9‐alkyl‐9H‐carbazole‐3,6‐diyl)s with palladium catalyzed cross‐coupling reactions of 3‐halo‐6‐halomagnesio‐9‐alkyl‐9H‐carbazoles, generated in situ from their corresponding 3,6‐diiodo‐ and 3,6‐dibromo‐derivatives was undertaken. Monomers with a range of alkyl group substituents with different steric requirements were investigated and their effects on the polymerization were studied. The effects of the nature of halogen substituents on the polymerization reaction were also investigated. Structural analysis of the polymers revealed exclusive 3,6‐linkage between consecutive carbazole repeat units on the polymer chains. The physical properties of these polymers were investigated with spectroscopic, thermal gravimetric analysis, and electrochemical studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6041–6051, 2004  相似文献   

3.
Condensation copolymerization reactions of carbazole 3,6‐diboronate with 4,7‐bis(5‐bromo‐2‐thienyl)‐2,1,3‐benzothiadiazole (DTBT) only produce low‐molecular‐weight donor (D)‐π‐acceptor (A) copolymers. High‐molecular‐weight copolymers for use in optoelectronic devices are necessary for achieving extended π‐conjugation and for controlling the copolymer processibility. To elucidate the cause of the persistently low molecular weight, we synthesized three 3,6‐carbazole‐based D‐A copolymers using copolymerizations of N‐9′‐heptadecanyl‐3,6‐carbazole with DTBT, N‐9′{2‐[2‐(2‐methoxy‐ethoxy)‐ethoxy]‐ethyl}‐3,‐6‐carbazole with DTBT, and N‐9′‐heptadecanyl‐3,6‐carbazole with alkyl‐substituted DTBT. We investigated several parameters for their influence on molecular copolymer weight, including the conformation of the chain during growth, the solubility of the monomers, and the dihedral angles between the donor and acceptor units. Size exclusion chromatography, UV–vis absorption spectroscopy, and computational studies revealed that the low molecular weights of 3,6‐carbazole‐based D‐A copolymers resulted from conjugation breaks and the resulting high coplanarity, which led to strong interactions between polymer chains. These interactions limited formation of high‐molecular‐weight‐copolymers during copolymerization. The strong intermolecular interactions of the 3,6‐carbazole moiety were exploited by incorporating 3,6‐carbazole units into poly[9′,9′‐dioctyl‐2,7‐flourene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] prepared from 9′,9′‐dioctyl‐2,7‐flourene and DTBT. Interestingly, the number average molecular weight increased gradually with increasing 2,7‐fluorene monomer content but the number of conjugation breaks was a range of 6–7. The hole mobilities of the copolymers were studied for comparison purposes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
In the present study, a new (E)‐rich‐enyne π‐conjugated polymer containing a carbazole was designed and synthesized. Two different synthesis methods of poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene‐(E)‐vinylene] (PCZEV) have been prepared from 3,6‐diethynyl‐9(2‐ethylhexyl)carbazole by using the palladium‐carbene‐catalyzed reaction and/or by using the organolanthanide‐catalyzed reaction leading to well‐defined polymer, and their general properties were studied. Compared to poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene] (PCE), the UV‐vis absorption and photoluminescence of the PCZEV was red‐shifted, which indicates the extension of conjugation length. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2434–2442, 2009  相似文献   

5.
Four alternating arylamino‐functionalized copolymers were synthesized in a Suzuki copolymerization applying 4, 4′‐(2,7‐dibromo‐9H‐fluorene‐9,9‐diyl)dianiline, 4,4′‐(2,7‐dibromo‐9H‐fluorene‐9,9‐diyl)bis(N,N‐diphenylaniline), 4‐(3,6‐dibromo‐9H‐ carbazol‐9‐yl)aniline and 4‐(3,6‐dibromo‐9H‐carbazol‐9‐yl)‐N,N‐diphenylaniline in combination with 2,2′‐(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)bis(1,3,2‐dioxaborinane). The resulting novel alternating copolymers were fully characterized. The copolymers revealed blue light emission and wide optical bandgaps of at least 2.93 eV for the fluorene‐based and 3.07 eV for the carbazole‐based polymers. The amino‐functions allow to tie semiconducting CdTe nanocrystals (NCs) and to synthesize a series of composites with CdTe NCs. Moreover, tuning the emission color over a wide range by tying these CdTe NCs results in a facile preparation of organic–inorganic semiconductor composites with emission colors “à la carte.” © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A simple synthetic route was used for the synthesis of a novel series of alternating copolymers based on substituted 2,7‐distyrylfluorene bridged through alkylene chains. First, 2,7‐dibromofluorene was reacted with 2 equiv of butyllithium, and this was followed by a treatment with 1 equiv of α,ω‐dibromoalkane to yield the intermediate, poly(2,7‐dibromofluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl). ( 1 ) Heck coupling of the latter with 1‐tert‐butyl‐4‐vinylbenzene afforded the target, poly[2,7‐bis(4‐tert‐butylstyryl)fluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl] ( 2 ). The two versions of 2 ( 2a and 2b which have hexane and decane, respectively, as alkane groups) were readily soluble in common organic solvents. Their glass‐transition temperature was relatively low (52 and 87 °C). An intense blue photoluminescence emission with maxima at about 408 and 409 nm was observed in tetrahydrofuran solutions, whereas thin films exhibited an orange emission with maxima at 569 and 588 nm. Very large redshifts of the photoluminescence maxima and Stokes shifts in thin films indicated strong aggregation in the solid state. Both polymers oxidized and reduced irreversibly. Single‐layer light‐emitting diodes with hole‐injecting indium tin oxide and electron‐injecting aluminum electrodes were fabricated. They emitted orange light with external electroluminescence efficiencies of 0.52 and 0.36% photon/electron, as determined in light‐emitting diodes made of 2a and 2b , with alkylenes of (CH2)6 and (CH2)10, respectively. An increase in the external electroluminescence efficiency up to 1.5% was reached in light‐emitting diodes made of polymer blends consisting of 2a and poly(9,9‐dihexadecylfluorene‐2,7‐diyl), which emitted blue‐white light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 809–821, 2007.  相似文献   

7.
Poly(N‐alkyl‐3,6‐dihydroxy‐2,7‐carbazole) which should be soluble and have phenolic function was synthesized through different two routes. The former method was a direct synthesis by polymerizing a 2,7‐dibromo‐3,6‐dihydroxycarbazole monomer using Ni(cod)2, which only gave a low molecular weight polymer. The latter method was an ether cleavage reaction of methoxy groups in a precursor polymer, poly(3,6‐dimethoxycarbazole), using BBr3, which gave successfully the objective polymer that has a number average molecular weight of 4300 g/mol comparable to the precursor polymer. They showed large spectral changes in photoabsorption and fluorescence on addition of base. They also showed redox behavior similar to a hydroquinone/benzoquinone couple investigated by cyclic voltammetry. These new functions could be derived from the phenolic hydroxy group in the carbazole unit. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2039–2044  相似文献   

8.
Carbazole and fluorene‐based random and alternating copolycondensates were synthesized to develop high‐performance blue light‐emitting polymers by improving electron injection ability of poly(N‐aryl‐2,7‐carbazole)s that showed intense blue electroluminescence (EL) with good hole‐injection and ‐transport ability. These copolycondensates absorbed light energy at about λmax = 390 nm in CHCl3 and 400 nm in film state, and fluoresced at about λmax = 417 nm in CHCl3 and 430 nm in the thin film state. Energy gaps between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of them were about 2.9 eV, and the energy levels of LUMO situated lower than that of corresponding polycarbazole. Polymer light‐emitting diode devices having configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate)/polymer/CsF/Al using the copolycondensates, poly(N‐arylcarbazole‐2,7‐diyl), and poly(9,9‐dialkylfluorene‐2,7‐diyl), emitted bluish EL at operating voltages lower than 7 V. The device embedded the random copolycondensate showed notably higher performance with maximum luminance of 31,200 cd m?2 at 11.0 V, and the current efficiencies observed under operating voltages lower than 7 V were higher than those of the other devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

10.
Two novel alternating copolymers, poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(4‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P1 ) and poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(3‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P2 ), derived from 9,9‐dihexylfluorene and diketopyrrolopyrrole (DPP), have been successfully synthesized through palladium‐catalyzed Suzuki polycondensation in good yields. P1 and P2 possess moderate molecular weights and polydispersities, well‐defined structures, and excellent thermal properties with an onset decomposition temperature around 400 °C. Both P1 and P2 in thin films exhibit red photoluminescence from DPP species exclusively, with peaks at 609 and 616 nm, respectively. Cyclic voltammetry studies show that P1 and P2 have low‐lying lowest unoccupied molecular orbital energy levels at ?3.65 eV and reversible reduction processes, so these polymers may constitute another kind of red‐emitting polymer with high electron affinity. Preliminary electroluminescent results of devices with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ba/Al configuration reveal that P1 may be a promising candidate for red emitters with a maximum brightness of 153 cd/m2 and a maximum external quantum efficiency of 0.13%, whereas the performance of P2 is relatively poor. These differences might originate from different conjugation lengths in their main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2395–2405, 2006  相似文献   

11.
Newly designed 2H‐benzimidazole derivatives which have solubility groups at 2‐position have been synthesized and incorporated into two highly soluble carbazole based alternating copolymers, poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spirocyclohexane)] (PCDTCHBI) and poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spiro‐4′′‐((2′′′‐ethylhexyl)oxy)‐cyclohexane)] (PCDTEHOCHBI) for photovoltaic application. These alternating copolymers show low‐band gap properties caused by internal charge transfer from an electron‐rich unit to an electron‐deficient moiety. HOMO and LUMO levels are –5.53 and –3.86 eV for PCDTCHBI, and –5.49 and –3.84 eV for PCDTEHOCHBI, respectively. Optical band gaps of PCDTCHBI and PCDTEHOCHBI are 1.67 and 1.65 eV, respectively. The new carbazole based the 2H‐benzimidazole polymers show 0.11–0.13 eV lower values of band gaps as compared to that of carbazole based benzothiadiazole polymer, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT), while keeping nearly the same deep HOMO levels. The power conversion efficiencies of PCDTCHBI and PCDTEHOCHBI blended with [6,6]phenyl‐C71‐butyric acid methyl ester (PC71BM) are 1.03 and 1.15%, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
This article reports the synthesis, one‐ and two‐photon absorption, and excited fluorescence properties of poly(1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole‐alt‐N‐octyl‐3,6‐carbazole/2,7‐fluorene) ( PDCZ / PDFL ). PDCZ and PDFL are synthesized by the Suzuki cross‐coupling of 2,5‐dioctyl‐1,4‐diketo‐3,6‐bis(p‐bromophenylpyrrolo[3,4‐c]pyrrole and N‐octyl‐3,6‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)carbazole or 2,7‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)fluorene and have number‐average molecular weights of 8.5 × 103 and 1.14 × 104 g/mol and polydispersities of 2.06 and 1.83, respectively. They are highly soluble in common organic solvents and emit strong orange one‐ and two‐photon excited fluorescence (2PEF) in THF solution and exhibit high light and heat stability. The maximal two‐photon absorption cross‐sections (δ) measured in THF solution by the 2PEF method using femtosecond laser pulses are 970 and 900 GM per repeating unit for PDCZ and PDFL , respectively. These 1,4‐diketo‐pyrrolo[3,4‐c]pyrrole‐containing polymers with full aromatic structure and large δ will be promising high‐performance 2PA dyes applicable in two‐photon science and technology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 944–951  相似文献   

13.
The synthesis of 2‐ethynyl‐9‐substituted carbazole and 3‐ethynyl‐9‐substituted carbazole monomers containing first‐generation chiral and achiral dendritic (i.e., minidendritic) substituents, 2‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (2ECz), 3‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (3ECz), 2‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (2ECz*), and 3‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (3ECz*), is presented. All monomers were polymerized and copolymerized by stereospecific polymerization to produce cis‐transoidal soluble stereoisomers. A structural analysis of poly(2ECz), poly(2ECz*), poly(3ECz), poly(3ECz*), poly(2ECz*‐co‐2ECz), and poly(3ECz*‐co‐3ECz) by a combination of techniques, including 1H NMR, ultraviolet–visible, and circular dichroism spectroscopy, thermal optical polarized microscopy, and X‐ray diffraction experiments, demonstrated that these polymers had a helical conformation that produced cylindrical macromolecules exhibiting chiral and achiral nematic phases. Individual chains of these cylindrical macromolecules were visualized by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3509–3533, 2002  相似文献   

14.
Fluorene‐based polymers containing various fluorinated benzene (fluorobenzene, p‐difluorobenzene, and tetrafluorobenzene) moieties were synthesized. In addition, perfluorooctylation of poly‐[(9,9‐dioctylfluorene‐2,7‐diyl)‐co‐(fluorene‐2,7‐diyl)] was carried out to afford fluorene‐based polymers with perfluorooctyl moiety at the 9‐position on the fluorene ring. To evaluate the effect of fluorine moiety, polymers containing nonfluorinated benzene moieties and nonfluorinated octyl groups were synthesized. The photoluminescence measurements indicated that all these polymers exhibited blue emission in solution, but a polymer containing a perfluorooctyl group did not emit in the film state. Polymers containing various fluorinated benzene moieties showed higher fluorescence quantum yields and thermal stability than those containing nonfluorinated benzene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3143–3150, 2001  相似文献   

15.
Novel π‐conjugating polymers based on dibenzothiophene were synthesized with a novel dibenzothiophene derivative, 2,8‐bis(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)dibenzothiophene ( 1 ), prepared from dibenzothiophene. The Suzuki coupling polycondensation of 1 with 2,7‐dibromo‐9,9‐dioctylfluorene, 3,6‐dibromo‐9‐octylcarbazole, or 1,4‐dibromo‐2,5‐dioctyloxybenzene afforded the corresponding dibenzothiophene‐based polymers. The measurements of photoluminescence indicated that all these polymers exhibited blue emission in solution. The copolymer containing dibenzothiophene and 9,9‐dioctylfluorene units exhibited higher thermal stability than poly[(9,9‐dioctylfluorene‐2,7‐diyl)], although the quantum yield of copolymer was lower than that of poly[(9,9‐dioctylfluorene‐2,7‐diyl)]. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1521–1526, 2003  相似文献   

16.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

17.
A series of one donor–two acceptor (D–A1)‐(D–A2) random terpolymers containing a 2,7‐carbazole donor and varying compositions of perylene diimide (PDI) and naphthalene diimide (NDI) acceptors was synthesized via Suzuki coupling polymerization. The optical properties of the terpolymers are weighted sums of the constituent parent copolymers and all show strong absorption over the 400 to 700 nm range with optical bandgaps ranging from 1.77 to 1.87 eV, depending on acceptor composition. The copolymers were tested as acceptor materials in bulk heterojunction all‐polymer solar cells using poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b;4,5‐b′]dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene)‐2,6‐diyl] (PBDTTT‐C) as the donor material. In contrast to the optoelectronic properties, the measured device parameters are not composition dependent, and rather depend solely on the presence of the NDI unit, where the devices containing any amount of NDI perform half as well as those using the parent polymer containing only carbazole and PDI. Overall this is the first example of a one donor–two acceptor random terpolymer system containing perylene diimide (PDI) and naphthalene diimide (NDI) acceptor units, and demonstrates a facile method of tuning polymer optoelectronic properties while minimizing the need for complicated synthetic and purification steps. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3337–3345  相似文献   

18.
Highly organic soluble Ir(III) complexes with 9‐(6‐phenyl‐pyridin‐3‐ylmethyl)‐9H‐carbazole were simply synthesized, and the solubility of the new complex was significantly improved when compared with the conventional green‐emitting Ir(ppy)3. Since a carbazole group is tethered through a nonconjugated methylene spacer, the photophysical properties of new complexes are almost identical with those of conventional Ir(ppy)3. The pure complexes were utilized to prepare electrophosphorescent polymer light‐emitting diodes (PLEDs). The device performances were observed to be relatively better or comparable with those of Ir(ppy)3 based poly(N‐vinylcarbazole) systems. The integration of rigid hole‐transporting carbazole and phosphorescent complex provides a new route to design highly efficient solution‐processable complex for electrophosphorescent PLED applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7419–7428, 2008  相似文献   

19.
The effect of the presence of hexyl group in thiophene on the photophysical and electrochemical properties of poly[(9,9‐dioctyluorene)?2,7‐diyl‐alt‐(4,7‐bis(3‐hexylthien‐5‐yl)?2,1,3‐benzothiadiazole)?2′,2″‐diyl] (F8TBT) is investigated. The copolymers present electron donor–acceptor architecture and are synthesized by Suzuki coupling reaction. The UV/Vis spectra show absorption maximum in the wavelength range of blue and orange, which are associated with different segments of the polymer backbone. Addition of hexyl substituent groups has a positive effect on the molar absorptivity and increases the emission and absorption intensities due to fluorene and thiophene‐benzothiadiazole‐thiophene (TBT) units, although an increment in the bandgap is observed. Cyclic voltammetry study of the polymer films reveal irreversible reduction and oxidation processes of the TBT units in the polymer chain and the HOMO and LUMO energy levels suggest ambipolar character for the polymers, while the electrochemical bandgaps are consistent with the absorbance measurements. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1975–1982  相似文献   

20.
Three donor–acceptor (D–A) 1,3‐di(thien‐2‐yl)thieno [3,4‐c]pyrrole‐4,6‐dione‐based copolymers, poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐1,3‐bis(4‐hexylthien‐2‐yl)‐5‐octylthieno[3,4‐c]pyrrole‐4,6‐dione}, poly{N‐(1‐octylnonyl)carbazole‐2,7‐diyl‐alt‐1,3‐bis(4‐hexylthien‐2‐yl)‐5‐octylthieno[3,4‐c]pyrrole‐4,6‐dione}, and poly {4,8‐bis(2‐ethylhexyloxyl) benzo[1,2‐b:3,4‐b′]dithiophene‐alt‐1,3‐bis(4‐hexylthien‐2‐yl)‐5‐octylthieno[3,4‐c] pyrrole‐4,6‐dione} were synthesized by Suzuki or Stille coupling reaction. By changing the donor segment, the bandgaps and energy levels of these copolymers could be finely tuned. Cyclic voltammetric study shows that the highest occupied molecular orbital (HOMO) energy levels of the three copolymers are deep‐lying, which implies that these copolymers have good stability in the air and the relatively low HOMO energy level assures a higher open‐circuit potential when they are used in photovoltaic cells. Bulk‐heterojunction photovoltaic cells were fabricated with these polymers as the donors and PC71BM as the acceptor. The cells based on the three copolymers exhibited power conversion efficiencies of 0.22, 0.74, and 3.11% with large open‐circuit potential of 1.01, 0.99, and 0.90 V under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号