首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Crystal Structures of „Supramolecular”︁ Benzo‐18‐crown‐6 Potassium Tetrathiocyanato Metallates: A Dimeric Complex {[K(Benzo‐18‐crown‐6)]2[Hg(SCN)4]}2 and Two Isomeric Complexes [K(Benzo‐18‐crown‐6)][Cd(SCN)3] Containing Trithiocyanato Cadmate Anions with Chain Structures By reaction of potassium thiocyanatomercurate(II) complexes with benzo‐18‐crown‐6 (2,3‐benzo‐1,4,7,10,13,16‐hexaoxacyclooctadec‐2‐ene) crystals of {[K(benzo‐18‐crown‐6)]2[Hg(SCN4)]}2 ( 1 ) were obtained. 1 crystallizes monoclinic, space group P21/n (non‐standard setting of P21/c), a = 1737.35(2), b = 1377.16(2), c = 1984.12(3) pm, β = 100.637(1)°, Z = 2. With potassium tetrathiocyanatocadmate(II) two modifications of a complex [K(benzo‐18‐crown‐6)][Cd(SCN)3] ( 2 , 3 ), of different symmetry were formed. 2 crystallizes monoclinic, P21/c, a = 1158,31(3), b = 1096,55(2), c = 2028,46(2) pm, β = 99,5261(2)°, Z = 4, 3  orthorhombic, P21cn, a = 1105,95(3), b = 1413,07(4), c = 1617,10(5) pm, Z = 4. 1 has a dimeric structure, built up from a dication K2(benzo‐18‐crown‐6)2]2+ and two [K(benzo‐18‐crown‐6)]+ cations, which are bridged by two [Hg(SCN)4]2– anions. In 2 and 3 triply bridged infinite [{Cd(SCN)3}n] zigzag chains, stretching along screw axes, are to be found as anions. In 2 these chains exist in two conformations related by inversion symmetry, whereas in 3 only one form can be found. [K(benzo‐18‐crown‐6)]+ cations are linked to the anion chains via K · · · S interactions of different lengths.  相似文献   

2.
Complexes of Monovalent Dibenzo‐18‐crown‐6 Cations with Triiodide as Anions The new polyiodides [NH4(db18c6)]2(I3)2 ( 1 ), [NH4(db18c6)](db18c6)I3 ( 2 ), [Na1/2(db18c6)H2O]2I3 ( 3 ), [Rb(db18c6)]I3 ( 4 ), [Rb(db18c6)]2(I3)2 ( 5 ), [Cs(db18c6)]I3 ( 6 ), and [Cs2(db18c6)3][Cs(db18c6)3/2](I3)3 ( 7 ) were obtained from reactions of dibenzo‐18‐crown‐6 (db18c6) and iodine with NH4I, NaI, RbI, and CsI. Their crystal structures were determined by single‐crystal X‐ray diffraction. ( 1 ) M = NH4, ( 5 ) M = Rb: monoclinic, P21/n, a = 1409,67(8), b = 2211,63(14), c = 1627,16(10) pm, β = 101,030(5)°, Z = 4 (crystal data for M = NH4); ( 2 ): monoclinic, Pn, a = 1345,26(14), b = 773,82(4), c = 2095,10(20) pm, β = 94,439(8)°, Z = 2; ( 3 ): orthorhombic, Pnaa, a = 931,59(13), b = 2213,3(5), c = 2223,9(4) pm, Z = 4; ( 4 ): monoclinic, P21/n, a = 999,50(6), b = 1711,33(10), c = 1517,45(9) pm, β = 99,021(5)°, Z = 4; ( 6 ): triclinic, , a = 705,16(9), b = 1137,93(14), c = 1678,90(20) pm, α = 73,719(10), β = 79,782(10), γ = 83,669(10)°, Z = 2; ( 7 ): triclinic, , a = 1519,25(6), b = 1702,49(7), c = 2136,41(9) pm, α = 102,641(3), β = 101,989(3), γ = 91,911(3)°, Z = 2. 1 : 1 cations centered by M, [M(db18c6)]+, are found in the structures of ( 1 – 6 ). In contrast, the triple decker cation found in ( 7 ) is less common. The crystal structures are completed by mostly asymmetrically linear I3? anions.  相似文献   

3.
M(benzo‐18‐crown‐6)I4 (M = Cd, Hg) are obtained as red columnar crystals from the reactions of benzo‐18‐crown‐6 (b18c6), cadmium and mercury iodide, respectively, and iodine in molar ratios of 1:1:2 in acetonitrile. They both crystallize with the orthorhombic crystal system, P212121, a = 833.7(1), b = 1610.9(1), c = 1846.8(1) pm, V = 2480.3(1) 106·pm3, Z = 4, for M = Cd and a = 823.4(1), b = 1616.5(1), c = 1866.1(1) pm, V = 2483.8(2) 106·pm3 for M = Hg. The crystal structures consist of [M(b18c6)]I2 molecules which are connected to a slightly lengthened iodine molecule via a secondary contact, according to the formulation I2@[MI2@(b18c6)].  相似文献   

4.
Complexes of trifluoromethanesulfonates (triflates) with alkali metals Na, Rb, Cs have been prepared in the presence of various macrocyclic polyether crowns [(12‐crown‐4), (15‐crown‐5) and (18‐crown‐6)]. Depending on the combination of alkali ion with crown, the complexes include separated ion pairs [Na(12‐crown‐4)2] [SO3CF3] ( 1 ) and contact ion pairs [Na(15‐crown‐5)] [SO3CF3] ( 2 ), [Rb(18‐crown‐6)] [SO3CF3] ( 3 ), and [Cs(18‐crown‐6)] [SO3CF3] ( 4 ), in which the triflate acts as a bidentate ligand. It is shown that the choice of crown ether is of paramount importance in determining the solid‐state structural outcome. The complex resulting from the pairing of crown ether ( 1 ) develops, when the crown ether is too small in relation to the alkali ion radius. When the cavity size of the crown ether is matched with the alkali ion radius, simple monomeric structures are identified in 2 , 3 and 4 . The title compounds crystallize in the monoclinic crystal system: 1 : space group P2/c with a = 9.942(3), b = 11.014(2), c = 10.801(3) Å, β = 97.30(2)°, V = 1173.1(4) Å3, Z = 2, R1 = 0.0812, wR2 = 0.1133: 2 : space group P21/m with a = 7.949(2), b = 12.063(3), c = 9.094(2) Å, β = 105.98(2)°, V = 838.3(4) Å3, Z = 2, R1 = 0.0869, wR2 = 0.1035: 3 : space group P21/c with a = 12.847(5), b = 8.448(2), c = 22.272(6) Å, β = 122.90(3)°, V = 2029.5(1) Å3, Z = 4, R1 = 0.0684, wR2 = 0.1044: 4 : space group P21/n with a = 12.871(3), b = 8.359(1), c = 19.019(4) Å, β = 92.61(2)°, V = 2044.2(6) Å3, Z = 4, R1 = 0.0621, wR2 = 0.0979.  相似文献   

5.
Molecular and Crystal Structure of Rubidium(dibenzo‐18‐crown‐6)pentaiodide [Rb(C20H24O6)]I5 [Rb(Dibenzo‐18‐crown‐6)]2(I5)2 is obtained as dark brown columns by reacting dibenzo‐18‐crown‐6, rubidium iodide, and iodine in a molar ratio of 1 : 1 : 6 in ethanole / dichlormethane (1:1). [Rb(C20H24O6)]2(I5)2 crystallizes with four formula units per unit cell in the orthorhombic space group Pnma with a = 1725.15(2) pm, b = 1863.76(3) pm and c = 1885.19(3) pm. The crystal structure consists of pentaiodide units I5, which are linked to one another by head‐to‐tail‐contacts. The I2 units, which stick out of the chain, are twisted against each other, in a way that neither a cis or a trans configuration is formed. By secondary bonding, the iodine atoms form nets of 18‐member planar rings with an almost rectangular form. This net‐like structural element has not been described up to now.  相似文献   

6.
Red shiny crystals of [Rb(dibenzopyridino‐18‐crown‐6)2]2(I3)(I5) were obtained from a dichloromethane/ethanol solution of RbI, I2 and dibenzopyridino‐18‐crown‐6. Triclinic, , a = 1494.3(1), b = 1534.1(1), c = 2412.9(2) pm, α = 76.95(1), β = 83.58(1), γ = 68.67(1)°, V = 5016.7(7) 106·pm3, Z = 2. The crystal structure consists of [Rb(dbp18c6)2]+ cations leaving suitable three‐dimensional channels for the linear I3 and V‐shaped I5 anions which are isolated from each other.  相似文献   

7.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

8.
Single crystals of [Gd(OH)(H2O)(b18c6)]I(I3)(CH3CN) were obtained from an acetonitrile solution of GdI3, I2 and benzo‐18‐crown‐6. The crystal structure (monoclinic, P21/a (no. 14), Z = 4, a = 1233.8(1) pm, b = 1925.0(2) pm, c = 1252.3(1) pm, β = 104.375(7)°) contains hydroxide bridged cationic dimers and iodide as well as triiodide as anions.  相似文献   

9.
Pentaiodides of Complex Alkaline Metal Crown Ether Cations: Synthesis and Structural Characterisation of the Compounds [M(benzo‐15‐crown‐5)2]I5, M = Na, K, Rb and Cs The isotypic compounds [M(benzo‐15‐crown‐5)2]I5, M = Na, K, Rb and Cs are obtained as single crystals via the reaction of benzo‐15‐crown‐5, MI and iodine (2 : 1 : 2) from ethanol/dichloromethane (1 : 1). These compounds crystallize in the monoclinic space group P21/n with four formula units in the unit cell. The cations form typical sandwich complexes. The volume of the unit cell increases by 4, 3 % from the sodium to the caesium compound, corresponding to the increasing space required by the cations. The pentaiodide units consist of a elongated triiodide unit and two iodine half‐molecules. These iodine molecules are completed by centres of symmetry. The interconnection between the pentaiodide units leads to the formation of zig‐zag chains that run along [001]. Considering the strongly different ionic radii of the alkali‐metal cations, the existence of this number of isotypic structures is rather surprising.  相似文献   

10.
Crystal Structure of the “Supramolecular” Complex [Cs2(18-crown-6)][HgI4] with Unusually Coordinated Cs Ions The reaction of 18-crown-6, 1,4,7,10,13,16-hexaoxacyclooctadecane, with HgI2/CsI in methanol yields crystals of [Cs2(C12H24O6)][HgI4]. The compound crystallizes monoclinically, space group P21/c, Z = 4, a = 1574.8(3), b = 1067.0(3), c = 1693.2(6) pm, and β = 98.29(3)º. The structure consists of a network made up of two different types of [Cs-(18-crown-6)-Cs]2+ cations, interconnected by [HgI4]2? anions. The cations form an “anti-sandwich” structure with relatively short Cs ? Cs distances of 382 pm in the first type of cations and a longer distance of 480 pm in the second type of cations.  相似文献   

11.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

12.
Synthesis and Crystal Structure of the Adducts [DB-18C6] · CH3CN · CH3CSOH and [DC-18C6](CH3CSOH)2 as well as of the Salt-like Compounds [Cs(B-15C5)2]CH3CSS and [Cs(DB-18C6)]2S5(DMF)21) The reaction products of crown ethers, cesium, and sulfur in aprotic solvents like acetonitrile and dimethylformamide strongly depend on the reaction conditions. Using CH3CN as a solvent, sometimes neutral host-guest adducts crystallize only, e.g., [dibenzo-18C6] · CH3CN · CH3CSOH (monoclinic, S. G. P21/c, Z = 4, a = 9.73(1) Å, b = 22.03(1) Å, c = 11.86(1) Å, β = 91.8(1)°) or [dicyclohexyl-18C6](CH3CSOH)2 (monoclinic, S. G. P21/n, Z = 2, a = 7.75(1) Å, b = 10.32(1) Å, c = 17.73(1) Å, β = 95.7(1)°). The monothioacetic acid, CH3CSOH, must be regarded as the first product of the hydrolysis of CH3CN. Furthermore, another product of this kind of hydrolysis, CH3CSSH, is obtained too. Therefore, we also obtain the salt-like compound [Cs(benzo-15C5)2]CH3CSS (monoclinic, S. G. C2/c, Z = 4, a = 16.05(1) Å, b = 16.73(1) Å, c = 13.11(1) Å, β = 106.3(1)°). If the solvent DMF is used, the pentasulfide [Cs(dibenzo-18C6)]2S5(DMF)2 crystallizes (monoclinic, S. G. P21/n, Z = 4, a = 14.79(1) Å, b = 14.24(1) Å, c = 25.74(1) Å, β = 92.7(1°. The S52? anions show the cis-conformation.  相似文献   

13.
Colourless, lath‐shaped single crystals of Cs2[B12I12] · 2 CH3CN (monoclinic, C2/m; a = 1550.3(2), b = 1273.2(1), c = 1051.5(1) pm, β = 120.97(1)°; Z = 2) are obtained by the reaction of Cs2[B12H12] with an excess of I2 and ICl (molar ratio: 1 : 2) in methylene iodide (CH2I2) at 180 °C (8 h) and recrystallization of the crude product from acetonitrile (CH3CN). The crystal structure contains quasi‐icosahedral [B12I12]2– anions (d(B–B) = 176–182 pm, d(B–I) = 211–218 pm) which arrange in a cubic closest‐packed fashion. All octahedral interstices are filled with centrosymmetric dimer‐cations {[Cs(N≡C–CH3)]2}2+ containing a diamond‐shaped four‐membered (Cs–N–Cs–N) ring of Cs+ cations and nitrogen atoms of the solvating acetonitrile molecules (d(Cs–N) = 321 pm, 2 ×). The cesium cations themselves actually reside in the distorted tetrahedral voids of the cubic [B12I12]2– packing (d(Cs–I) = 402–461 pm, 10 ×) if one ignores the solvent particles.  相似文献   

14.
Pb(18‐crown‐6)Cl2 and Hg(18‐crown‐6)I2 are obtained as transparent colourless crystals of needle and hexagonal shape, respectively, by isothermal evaporation of their dichloromethane solutions. Pb(18‐crown‐6)Cl2 crystallizes with the trigonal crystal system [ , no. 148, a = b = 1176.3(2), c = 1191.8(3) pm, V = 1428.2(5) 106·pm3, Z = 3] whereas Hg(18‐crown‐6)I2 crystallizes with the orthorhombic crystal system (Pnma, no. 62, a = 1613.9(2) pm, b = 2822.2(5) pm, c = 841.3(1) pm, V = 3832(1)106·pm3, Z = 8). Both compounds are characterized by linear MX2 (HgI2 or PbCl2) molecular units which are encrypted by the crown ether. In both cases, the divalent metal ion resides in the middle of the crown ether resulting in a hexagonal bipyramidal coordination environment for the metal cations. The molecular symmetry comes close to D3d. Hg(18‐crown‐6)I2 and Pb(18‐crown‐6)Cl2 differ in the way the single MX2@18‐crown‐6 units are packed. Whereas the Hg(18‐crown‐6)I2 molecules are arranged in a (distorted) cubic closest packing, the Pb(18‐crown‐6)Cl2 molecules adopt a hexagonal closest packing.  相似文献   

15.
Crystal Structure of [BeCl2(15‐Crown‐5)] Single crystals of [BeCl2(15‐crown‐5)] ( 1 ) were obtained from dichloromethane solutions of BeCl2 in the presence of the equivalent amount of 15‐crown‐5 and characterized by IR spectroscopy and X‐ray diffraction. Space group P21/c, Z = 4, lattice dimensions at 100 K: a = 1036.2(1), b = 1071.1(1), c = 1360.1(1) pm, β = 109.86(1)°, R1 = 0.0225. The structure determination shows no disorder, all hydrogen positions were refined isotropically. The results are in contrast to the previously reported crystal structure determination in the space group P21nb. The beryllium atom of 1 forms a BeO2C2 five‐membered heterocycle with terminal chlorine atoms to give a distorted tetrahedral coordination with distances Be–O 166.5(2), 169.9(2) pm, and Be–Cl 195.8(2), 197.8(2) pm. The structural results are in good agreement with DFT calculations on B3LYP/6‐311+G** level.  相似文献   

16.
Alkali‐isocyanoacetates. Synthesis and Structure of [K(18‐crown‐6)](O2CCH2NC) The alkali isocyanoacetates M+[O2CCH2NC]? (M = Li,Na,K,Cs) ( 1a ‐ d ) are synthesized by reaction of ethyl isocyanoacetate with the respective alkali hydroxides in ethanol and characterized by IR, NMR (1H, 13C), and mass spectrometry (FAB). In alcoholic solution as well as in the gas phase ion pairs and higher aggregated species are observed. In contrast, [K(18‐crown‐6)][O2CCH2NC] ( 2 ) which is obtained from 1c and 18‐crown‐6, turns out to be a 1:1 electrolyte in solution (acetone); in the solid, the isocyanoacetate anion binds to K+ via the two carboxylate oxygen atoms resulting in an O8‐coordinated metal atom.  相似文献   

17.
Novel Halogenochalcogeno(IV) Acids: [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] Systematic studies on halogenochalcogeno(IV) acids containing tellurium and bromine led to the new crystalline phases [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] ( 1 ) and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] ( 2 ). The [Te2Br10]2‐ anions consists of two edge‐sharing distorted TeBr6 octahedra, the oxonium cations are stabilized by crownether. ( 1 ) crystallizes in the monoclinic space group P21/n with a = 14.520(5) Å, b = 22.259(6) Å, c = 16.053(5) Å, β = 97.76(3)° and Z = 4, whereas ( 2 ) crystallizes in the triclinic space group with a = 11.005(4) Å, b = 12.103(5) Å, c = 14.951(6) Å, α = 71.61(3)°, β = 69.17(3)°, γ = 68.40(3)° and Z = 1.  相似文献   

18.
Cs[Er10(C2)2]I18 and [Er10(C2)2]Br18: Two New Examples for Reduced Halides of the Lanthanides with Isolated [M10(C2)2] Clusters Cs[Er10(C2)2]I18 is obtained from the reaction of ErI3 with caesium and carbon in sealed tantalum containers at 700°C and [Er10(C2)2]Br18 through the metallothermic reduction of ErBr3 with rubidium in the presence of carbon at 750°C in sealed niobium containers. The crystal structures {Cs[Er10(C2)2]I18: triclinic, P1 ; a = 1 105.2(8) pm, b = 1 112.0(7) pm; c = 1 122.9(8) pm; α = 66.91(3)°, β = 87.14(3)°; γ = 60.80(3)°; Z = 1; R = 0.049, Rw = 0.043; [Er10(C2)2]Br18: monoclinic, P21/n, a = 971.8(6) pm, b = 1 623.4(9) pm, c = 1 163.8(6) pm, β = 104.00(6)°; Z = 2; R = 0.077, Rw = 0.057} contain isolated dimeric [Er10(C2)2] clusters. Due to the inclusion of C2 units, the octahedra are elongated in the direction of the pseudo C4 axis. The connecting edges of the two octahedra are exceptionally short (316.7 pm and 314.8 pm respectively). The dimeric units are connected via Xi?a and Xa?i (X = Br, I) bridges according to [Er10(C2)2XX]X. Cs+ is surrounded by a cuboctahedron of iodide ions in Cs[Er10(C2)2]I18.  相似文献   

19.
[Ba(benzo‐15‐crown‐5)2](I3)2 and [Ba(benzo‐15‐crown‐5)2](I7)2 can be obtained in crystalline form by reacting benzo‐15‐crown‐5 (C14H20O5), barium iodide (BaI2), and iodine (I2) in ethan‐ole /dichloromethane. The triiodide consists of a sandwich‐like cation [Ba(benzo‐15‐crown‐5)2]2+ and an isolated symmetrically linear I3 anion. The unusual I7 anion in the heptaiodide can be described as a V‐shaped pentaiodide unit, which is connected with a slightly widened iodine molecule to the rare Z‐form of the heptaiodide ion. In the crystal structure, secondary bonding distances lead to almost planar ten‐membered iodine rings, which are connected by common edges to form staircase‐like bands.  相似文献   

20.
Crystal Structures of the Polyselenides [Cs(18-Crown-6)]2Se5 · DMF, [Rb(222-Crypt)]2Se6, [Ba(15-Crown-5)2]Se6 · DMF, and [Na(12-Crown-4)2]Se7 . The title compounds have been prepared by reactions of the corresponding diselenides with excess selenium in the presence of crown ethers in dimethylformamide solutions, forming black crystals. [Cs(18-Crown-6)]2Se5 · DMF: Space group P21/m, Z = 2, 2 194 observed unique reflections, R = 0.119. Lattice dimensions at 20°C: a = 1 041.2; b = 1 496.3; c = 1 459.7 pm; β = 100.39°. The compound forms an ionic triple with Cs…Se-contacts between 374 and 381 pm. [Rb(222-Crypt)]2Se6: Space group P1 , Z = 2, 7 405 observed unique reflections, R = 0.056. Lattice dimensions at – 70°C: a = 1 106.8; b = 1 460.8; c = 1 718.8 pm; α = 89.22°; β = 86.65°; γ = 71.53°. The compound contains Se62? chains without direct contact with each other. [Ba(15-Crown-5)2]Se6 · DMF: Space group P21/n, Z = 4, 2 680 observed unique reflections, R = 0.055. Lattice dimensions at – 80°C: a = 1 051.9; b = 1 322.4; c = 2 729.9 pm; β = 100.93°. The compound contains Se62? chains, which are isolated from each other by the cations and the included DMF molecules. [Na(12-Crown-4)2]2Se7: Space group P1 , Z = 2, 7 313 observed unique reflections, R = 0.042. Lattice dimensions at – 70°C: a = 1 260.9; b = 1 433.6; c = 1 462.9 pm; α = 80.27°; β = 78.60°; γ = 69.34°. The compound contains Se72? chains without direct contacts with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号