首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 783 毫秒
1.
The reactions of [Co2(CO)8] with one equiv of the benzamidinate (R2bzam) group‐14 tetrylenes [M(R2bzam)(HMDS)] (HMDS=N(SiMe3)2; 1 : M=Ge, R=iPr; 2 : M=Si, R=tBu; 3 : M=Ge, R=tBu) at 20 °C led to the monosubstituted complexes [Co21M?M(R2bzam)(HMDS)}(CO)7] ( 4 : M=Ge, R=iPr; 5 : M=Si, R=tBu; 6 : M=Ge, R=tBu), which contain a terminal κ1M–tetrylene ligand. Whereas the Co2Si and Co2Ge tert‐butyl derivatives 5 and 6 are stable at 20 °C, the Co2Ge isopropyl derivative 4 evolved to the ligand‐bridged derivative [Co2{μ‐κ2Ge,N‐Ge(iPr2bzam)(HMDS)}(μ‐CO)(CO)5] ( 7 ), in which the Ge atom spans the Co?Co bond and one arm of the amidinate fragment is attached to a Co atom. The mechanism of this reaction has been modeled with the help of DFT calculations, which have also demonstrated that the transformation of amidinate‐tetrylene ligands on the dicobalt framework is negligibly influenced by the nature of the group‐14 metal atom (Si or Ge) but is strongly dependent upon the volume of the amidinate N?R groups. The disubstituted derivatives [Co21M?M(R2bzam)(HMDS)}2(CO)6] ( 8 : M=Ge, R=iPr; 9 : M=Si, R=tBu; 10 : M=Ge, R=tBu), which contain two terminal κ1M–tetrylene ligands, have been prepared by treating [Co2(CO)8] with two equiv of 1 – 3 at 20 °C. The IR spectra of 8 – 10 have shown that the basicity of germylenes 1 and 3 is very high (comparable to that of trialkylphosphanes and 1,3‐diarylimidazol‐2‐ylidenes), whereas that of silylene 2 is even higher.  相似文献   

2.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

3.
Despite the explosive growth of germylene compounds as ligands in transition metal complexes, there is a modicum of precedence for the germylene zinc complexes. In this work, the synthesis and characterization of new germylene zinc complexes [PhC(NtBu)2Ge{N(SiMe3)2}→ZnX2]2 (X= Br ( 2 ) and I ( 3 )) supported by (benz)‐amidinato germylene ligands are reported. The solid‐state structures of 2 and 3 have been validated by single‐crystal X‐ray diffraction studies, which revealed the dimeric nature of the complexes, with distorted tetrahedral geometries around the Ge and Zn center. DFT calculations reveal that the Ge–Zn bonds in 2 and 3 are dative in nature. The reaction of 2 with elemental sulfur resulted in the first structurally characterized germathione stabilized ZnBr2 complexes PhC(NtBu)2Ge(=S){N(SiMe3)2}→ZnBr2 ( 5 ). Therefore, the Ge=S in 5 is in‐between Ge–S single and Ge=S double bond length, owing to the coordination of a sulfur lone pair of electrons to ZnBr2.  相似文献   

4.
The synthesis and reactivity of a CoI pincer complex [Co(ϰ3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ featuring an η2‐ Caryl−H agostic bond is described. This complex was obtained by protonation of the CoI complex [Co(PCPNMeiPr)(CO)2]. The CoIII hydride complex [Co(PCPNMeiPr)(CNtBu)2(H)]+ was obtained upon protonation of [Co(PCPNMeiPr)(CNtBu)2]. Three ways to cleave the agostic C−H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C−H bond cleavage) and reformation of [Co(PCPNMeiPr)(CO)2]. Second, C−H bond cleavage is achieved upon exposure of [Co(ϰ3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ to oxygen or TEMPO to yield the paramagnetic CoII PCP complex [Co(PCPNMeiPr)(CO)2]+. Finally, replacement of one CO ligand in [Co(ϰ3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ by CNtBu promotes the rapid oxidative addition of the agostic η2‐Caryl−H bond to give two isomeric hydride complexes of the type [Co(PCPNMeiPr)(CNtBu)(CO)(H)]+.  相似文献   

5.
The synthesis and reactivity of a CoI pincer complex [Co(?3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ featuring an η2‐ Caryl?H agostic bond is described. This complex was obtained by protonation of the CoI complex [Co(PCPNMeiPr)(CO)2]. The CoIII hydride complex [Co(PCPNMeiPr)(CNtBu)2(H)]+ was obtained upon protonation of [Co(PCPNMeiPr)(CNtBu)2]. Three ways to cleave the agostic C?H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C?H bond cleavage) and reformation of [Co(PCPNMeiPr)(CO)2]. Second, C?H bond cleavage is achieved upon exposure of [Co(?3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ to oxygen or TEMPO to yield the paramagnetic CoII PCP complex [Co(PCPNMeiPr)(CO)2]+. Finally, replacement of one CO ligand in [Co(?3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ by CNtBu promotes the rapid oxidative addition of the agostic η2‐Caryl?H bond to give two isomeric hydride complexes of the type [Co(PCPNMeiPr)(CNtBu)(CO)(H)]+.  相似文献   

6.
The first 4π‐electron resonance‐stabilized 1,3‐digerma‐2,4‐diphosphacyclobutadiene [LH2Ge2P2] 4 (LH=CH[CHNDipp]2 Dipp=2,6‐iPr2C6H3) with four‐coordinate germanium supported by a β‐diketiminate ligand and two‐coordinate phosphorus atoms has been synthesized from the unprecedented phosphaketenyl‐functionalized N‐heterocyclic germylene [LHGe‐P=C=O] 2 a prepared by salt‐metathesis reaction of sodium phosphaethynolate (P≡C?ONa) with the corresponding chlorogermylene [LHGeCl] 1 a . Under UV/Vis light irradiation at ambient temperature, release of CO from the P=C=O group of 2 a leads to the elusive germanium–phosphorus triply bonded species [LHGe≡P] 3 a , which dimerizes spontaneously to yield black crystals of 4 as isolable product in 67 % yield. Notably, release of CO from the bulkier substituted [LtBuGe‐P=C=O] 2 b (LtBu=CH[C(tBu)N‐Dipp]2) furnishes, under concomitant extrusion of the diimine [Dipp‐NC(tBu)]2, the bis‐N,P‐heterocyclic germylene [DippNC(tBu)C(H)PGe]2 5 .  相似文献   

7.
Ge2Co6(CO)20: A Ge‐Co Cluster Compound from Solubilized GeBr The Ge‐Co cluster Ge2Co6(CO)20 is synthesized from a reaction of a GeBr solution with Co2(CO)8. Isolation of suitable crystals allows the determination of the crystal structure of Ge2Co6(CO)20, being the lacking member in the row GeCo4(CO)14 – Ge2Co6(CO)20 – Ge3Co8(CO)26.  相似文献   

8.
A metal‐containing N‐heterocyclic germylene based on a N‐mesityl (Mes)‐substituted oxalamidine framework is reported. The precursor (MesN=)2C–C(–N(H)Mes)2 ( 1 H2) was converted into its rhodium complex [Rh(κ2N‐ 1 H2)(cod)][OTf] ( 2 ) (cod = 1,5‐cyclooctadiene; OTf = triflate) in 62 % isolated yield. Subsequent reaction of 2 with Ge{N(SiMe3)2}2 gave the crystalline N‐heterocyclic germylene [Rh(cod)(μ‐ 1 )Ge][OTf] ( 3 ) in 50 % yield. The compounds under study were fully characterized by various methods, also including X‐ray crystallographic studies on single crystals of 2 and 3 . Density functional theory (DFT) calculations revealed that π conjugation in the bridging oxalamidine framework is increased and n(N)–p(Ge) π bonding is decreased upon κ2N metal coordination; a further weakening of the Ge–N bond occurs through triflate coordination to the GeII atom. Nevertheless, preliminary coordination studies revealed that 3 behaves as 2‐electron (L ‐type) germylene donor ligand. Treatment of 3 with [Ir(cod)Cl]2 furnished the heterobimetallic complex [Rh(cod)(μ‐ 1 )Ge‐Ir(cod)Cl][OTf] ( 4 ), as evidenced by NMR spectroscopic investigations and DFT calculations.  相似文献   

9.
The reaction of [(ArN)2MoCl2] · DME (Ar = 2,6‐i‐Pr2C6H3) ( 1 ) with lithium amidinates or guanidinates resulted in molybdenum(VI) complexes [(ArN)2MoCl{N(R1)C(R2)N(R1)}] (R1 = Cy (cyclohexyl), R2 = Me ( 2 ); R1 = Cy, R2 = N(i‐Pr)2 ( 3 ); R1 = Cy, R2 = N(SiMe3)2 ( 4 ); R1 = SiMe3, R2 = C6H5 ( 5 )) with five coordinated molybdenum atoms. Methylation of these compounds was exemplified by the reactions of 2 and 3 with MeLi affording the corresponding methylates [(ArN)2MoMe{N(R1)C(R2)N(R1)}] (R1 = Cy, R2 = Me ( 6 ); R1 = Cy, R2 = N(i‐Pr)2 ( 7 )). The analogous reaction of 1 with bulky [N(SiMe3)C(C6H5)C(SiMe3)2]Li · THF did not give the corresponding metathesis product, but a Schiff base adduct [(ArN)2MoCl2] · [NH=C(C6H5)CH(SiMe3)2] ( 8 ) in low yield. The molecular structures of 7 and 8 are established by the X‐ray single crystal structural analysis.  相似文献   

10.
The tetravalent germanium and tin compounds of the general formulae Ph*EX3 (Ph* = C6H3Trip‐2,6, Trip = C6H2iPr3‐2,4,6; E = Sn, X = Cl ( 1a ), Br ( 1b ); E = Ge, X = Cl ( 2 )) are synthesized by reaction of Ph*Li·OEt2 with EX4. The subsequent reaction of 1a , b with LiP(SiMe3)2 leads to Ph*EP(SiMe3)2 (E = Sn ( 3 ), Ge ( 4 )) and the diphosphane (Me3Si)2PP(SiMe3)2 by a redox reaction. In an alternative approach 3 and 4 are synthesized by using the corresponding divalent compounds Ph*ECl (E = Ge, Sn) in the reaction with LiP(SiMe3)2. The reactivity of Ph*SnCl is extensively investigated to give with LiP(H)Trip a tin(II)‐phosphane derivative Ph*SnP(H)Trip ( 6 ) and with Li2PTrip a proposed product [Ph*SnPTrip] ( 7 ) with multiple bonding between tin and phosphorus. The latter feature is confirmed by DFT calculations on a model compound [PhSnPPh]. The reaction with Li[H2PW(CO)5] gives the oxo‐bridged tin compound [Ph*Sn{W(CO)5}(μ‐O)2SnPh*] ( 8 ) as the only isolable product. However, the existence of 8 as the bis‐hydroxo derivative [Ph*Sn{W(CO)5}(μ‐OH)2SnPh*] ( 8a ) is also possible. The SnIV derivatives Ph*Sn(OSiMe3)2Cl ( 9 ) and [Ph*Sn(μ‐O)Cl]2 ( 10 ) are obtained by the oxidation of Ph*SnCl with bis(trimethylsilyl)peroxide and with Me3NO, respectively. Besides the spectroscopic characterization of the isolated products compounds 1a , 2 , 3 , 4 , 8 , and 10 are additionally characterized by X‐ray diffraction analysis.  相似文献   

11.
A germanium(II)‐guanidine derivative of formula Ge{iPrNC[N(SiMe3)2]NiPr}2 ( 1 ) was synthesized and characterized by 1H NMR, 13C NMR, elemental analysis, and X‐ray diffraction method. Thermal property was also studied to identify its thermal stability and volatility. More importantly, compound 1 was synthesized to develop a new method for germanium tellurides, where anhydrous hydrazine was introduced to prompt the activity of germanium(II) guanidines (or derivatives) towards (Et3Si)2Te. Solution reaction of compound 1 , (Et3Si)2Te, and anhydrous hydrazine was investigated to pre‐identify the feasibility of this combination for ALD process. The EDS data of the black precipitate from this reaction verified the potential of this method to manufacture germanium tellurides.  相似文献   

12.
The reaction of the dimeric bis(germylene) [Ge{3,5‐(CF3)2pz}2]2 ( 2 ) with protic molybdenum hydride [Mo(H)Cp(CO)3] yielded two different products. In diethyl ether the divalent germylene readily inserts into the Mo–H σ‐bond and the product of the oxidative addition, [Ge(H){Mo}(pz)2] ( 4 ) (with pz = 3,5‐disubstituted pyrazole, 3,5‐(CF3)2pz; {Mo} = [MoCp(CO)3]), was isolated featuring a germanium(IV) hydride moiety. In toluene an interesting “cascade” reaction takes place furnishing a bis‐metal substituted digermane [{Mo}(H)(pz)Ge–Ge(pz)2{Mo}]. Although the detailed mechanism of the reaction remains the subject of speculation it seems likely that a germylene, [GeII(pz){Mo}], inserts into the germanium(IV) hydrogen bond of [Ge(H){Mo}(pz)2] under formation of a germanium‐germanium bond, which is a rare reaction behaviour.  相似文献   

13.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

14.
Reaction of N-heterocyclic carbene (NHC)-stabilized PGeP-type germylene Ge{o-(PiPr2)C6H4}2MeIiPr ( 1 ) (MeIiPr=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with Ni(cod)2 gave pincer germylene complex Ni[Ge{o-(PiPr2)C6H4}2](MeIiPr) ( 2 ), in which the Ge center of 2 is significantly pyramidalized. Theoretical calculation on 2 predicted the ambiphilicity of the germanium center, which was confirmed by reactivity studies. Thus, complex 2 reacted with both Lewis base MeIMe (MeIMe=1,3,4,5-tetramethylimidazol-2-ylidene) and Lewis acid BH3⋅SMe2 at the germanium center to afford the adducts Ni[Ge{o-(PiPr2)C6H4}2MeIMe](MeIiPr) ( 3 ) and Ni[Ge{o-(PiPr2)C6H4}2⋅BH3](MeIiPr) ( 4 ), respectively. Furthermore, the former was slowly converted to dinuclear complex Ni2[Ge{o-(PiPr2)C6H4}2]2(MeIMe)2 ( 5 ) at room temperature. Complex 5 can be regarded as a dimer of the MeIMe analog of 2 with a Ni-Ge-Ge-Ni linkage.  相似文献   

15.
We report on the synthesis of new derivatives of silylated clusters of the type [Ge9(SiR3)3]? (R = SiMe3, Me = CH3; R = Ph, Ph = C6H5) as well as on their reactivity towards copper and zinc compounds. The silylated cluster compounds were synthesized by heterogeneous reactions starting from the Zintl phase K4Ge9. Reaction of K[Ge9{Si(SiMe3)3}3] with ZnCl2 leads to the already known dimeric compound [Zn(Ge9{Si(SiMe3)3}3)2] ( 1 ), whereas upon the reaction with [ZnCp*2] the coordination of [ZnCp*]+ to the cluster takes place (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) under the formation of [ZnCp*(Ge9{Si(SiMe3)3}3)] ( 2 ). A similar reaction leads to [CuPiPr3(Ge9{Si(SiMe3)3}3)] ( 3 ) from [CuPiPr3Cl] (iPr=isopropyl). Further we investigated the novel silylated cluster units [Ge9(SiPh3)3]? ( 4 ) and [Ge9(SiPh3)2]? ( 5 ), which could be identified by mass spectroscopy. Bis‐ and tris‐silylated species can be synthesized by the respective stoichiometric reactions, and the products were characterized by ESI‐MS and NMR experiments. These clusters show rather different reactivity. The reaction of the tris‐silylated anion 4 with [CuPiPr3Cl] leads to [(CuPiPr3)3Ge9(SiPh3)2]+ as shown from NMR experiments and to [(CuPiPr3)4{Ge9(SiPh3)2}2] ( 6 ), which was characterized by single‐crystal X‐ray diffraction. Compound 6 shows a new type of coordination of the Cu atoms to the silylated Zintl clusters.  相似文献   

16.
The reaction system GeCl2 ⋅ dioxane/LiSTsi (Tsi=C(SiMe3)3) opens a fruitful area in germanium chemistry, depending on the stoichiometry and solvent used during the reaction. For example, the reaction of GeCl2 ⋅ dioxane in toluene with two equivalents of the thiolate gives the expected germylene Ge(STsi)2 in excellent yield. This germylene readily reacts with hydrogen and acetylene, however, in a non-selective way. By using an excess amount of the thiolate and toluene as the solvent, the germanide [Ge(STsi)3][Li(thf)] is obtained. Performing the same reaction in thf leads to a C−H activation of thf to give (H7C4O)Ge[STsi](μ2-S)2Ge[STsi]2, in which the thf molecule is still intact. Using a sub-stoichiometric amount of the thiolate leads to the heteroleptic compound [ClGe(STsi)]2 and to the insertion product (thf)Ge[S-GeCl2-Tsi]2, in which additional GeCl2 molecules insert into the C−S bonds of Ge(STsi)2. The synthesis and the experimentally determined structures of all compounds are presented together with first reactivity studies of Ge(STsi)2.  相似文献   

17.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

18.
New Organometallic Indium Nitrogen Compounds. Synthesis and Crystal Structures of [{Cp(CO)3Mo}2InN(SiMe3)2] and [{Cp(CO)3Mo}In{N(SiMe3)2}2] The reaction of [{Cp(CO)3Mo}2InCl] with LiN · (SiMe3)2 leads to the formation of [{Cp(CO)3Mo}2InN · (SiMe3)2] ( 1 ). 1 is monomeric and it contains an indium atom which is coordinated in a trigonal planar manner by two {Cp(CO)3Mo} fragments and a N(SiMe3)2 group. The corresponding bis-amide [{Cp(CO)3Mo}In{N(SiMe3)2}2] ( 2 ) is prepared by the reaction of [{Cp(CO)3Mo}InCl2] with two equivalents of LiN(SiMe3)2. In analogy to 1, 2 is monomeric and it contains an indium atom in a trigonal planar coordination.  相似文献   

19.
Reaction of N‐isopropyl‐2‐(isopropylamino)troponimine, {(i‐Pr)2ATI}H, with fac‐[W(CO)3(NCMe)3] yield the complex tungsten‐tetracarbonyl‐N, N'‐diisopropyl‐1, 2‐diimino‐3, 5‐cycloheptadiene ( 1 ), in which the ligand is tautomerized from the enamino to the imino isomer. As a result of the rearrangement the conjugate 10 π electron system of the ligand is destroyed. Further, treatment of compound 1 with an excess of KH in THF leads to the ionic complex [K(THF)2][{(i‐Pr)2ATI}W(CO)4] ( 2 ). In the presence of diglyme the corresponding complex [K(diglyme)2][{(i‐Pr)2ATI}W(CO)4] ( 3 ) is obtained. All compounds have been characterized by spectroscopic methods. Complex 1 has also been investigated by single crystal X‐ray diffraction.  相似文献   

20.
The reaction of iPr2Si(PH2)2 ( 1 ) with [Ca{N(SiMe3)2}2(THF)2] at 25 °C in molar ratio 1:1 yields the compound [Ca3{iPr2Si(PH)2}3(THF)6] ( 2 ). Compound 2 consists of two Ca2P3 trigonal bipyramids with one conjoint calcium corner and SiiPr2 bridged phosphorus atoms. In contrast, the same reaction at 60 °C yield the complex [Ca({P(SiiPr2)2PH}2(THF)4] ( 3 ). The isotype strontium compound [Sr({P(SiiPr2)2PH}2(THF)4] ( 4 ) was obtained from the reaction of iPr2Si(PH2)2 with [Sr{N(SiMe3)2}2(DME)2]. The Compounds 2 – 4 were characterised by single crystal X‐ray diffraction, elemental analysis as well as IR and NMR spectroscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号