首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Colourless single crystals of the caffeine adduct of mercurous perchlorate dihydrate, [Hg2(Caf)2](ClO4)2(H2O)2, were grown from aqueous solutions of mercurous perchlorate and caffeine by isothermal evaporation at ambient temperature. The crystal structure (monoclinic, P21/n, Z = 4, a = 1628.0(2), b = 780.4(1), c = 2229.6(3) pm, β = 99.84(1)°, R1(all data) = 0.0894) contains [trans‐Caf‐Hg‐Hg‐Caf]2+ cations with a Hg‐Hg distance of 250.88(6) pm, Hg‐N (bond) distances of 214.4(6) and 215.1(6) pm and Hg‐Hg‐N angles of 176.9(2) and 165.1(2)°, respectively. These cations are attached via weak Hg‐O contacts to dimers which are further arranged to leave large channels into which one crystal water molecule is included. The second water molecule and the two perchlorate anions are weakly attracted to one Hg atom.  相似文献   

2.
Colourless long and thin needles of the reaction product of melamine with mercuric chloride in water/methanol, [MelH+HgCl3](Mel), crystallize with a structure that contains zwitterionic molecules [MelH+HgCl3] and “free” melamine (Mel) molecules; monoclinic, P21, Z = 2, a = 939.43(18), b = 682.80(9), c = 1218.9(2) pm, β = 99.61(2)°, R(all) = 0.0291, T = 20 °C.  相似文献   

3.
Molecular and Crystal Structure of Mercuric α‐Amino‐γ‐methyl‐mercapto‐butyrate, Hg(Met)2 The mercuric salt of deprotonated methionine, Hg(Met)2, was obtained as colourless needles from aqueous solutions of methionine and HgCl2 or HgO, respectively. The crystal structure (monoclinic, P21, Z = 2, a = 984, 2(2), 507, 96(6), c = 1574, 2(3) pm, β = 93, 05(2)°; Rall = 0, 055) exhibits formula‐like molecules with strong Hg—N coordination at a distance of 216 pm; one oxygen atom adds to a chelate like N—Hg—O coordination. Stacking of these molecules adds two oxygen atoms of different methionate anions to an effective 2+2+2 ?octahedral”? coordination around the mercuric ion. Thereby a layer structure parallel (001) is formed with the methyl‐mercapto function on top and bottom of these layers.  相似文献   

4.
Crystal Structure of Hexamine Cyclotriphosphazene, P3N3(NH2)6 In the presence of KNH2 hexamine cyclotriphosphazene semi ammoniate (molar ratio 12:1) in NH3 gives crystals of solvent free P3N3(NH2)6 within 5 d at 130°C and p(NH3) = 110 bar. The structure was solved by X-rax methods: P3N3(NH2)6: P21/c, Z = 4, a = 10.889(6) Å, b = 5.9531(6) Å, c = 13.744(8) Å, β = 97.83(3)°, Z(Fo) = 1 721 with (Fo)2 ≥ 3σ(Fo)2, Z(var.) = 157, R/Rw = 0,036/0,041 The structure contains columns of molecules P3N3(NH2)6 all in the same orientation. The six-membered rings within one molecule have boat conformation. The columns are stacked together in a way that one is surrounded by four others shifted by half a lattice constant in direction [010]. Strong hydrogen bridge-bonds N? H…?N connect molecules within the columns and between them.  相似文献   

5.
Na7I2(OH)5: A Hydroxide Iodide in the System NaOH/NaI The pseudobinary system NaOH/NaI is investigated by X-ray methods. The crystal structure of the compound Na7I2(OH)5 was solved by single crystal data: Na7I2(OH)5: P4/nmm, Z = 2, a = 7.748(2) Å, c = 10.260(3) Å, Z(Fo) = 443 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.044/0.059 Na7I2(OH)5 crystallizes in a new type of structure which contains puckered layers of ∞2[Na7(OH)52+] connected via iodide ions.  相似文献   

6.
Two Mercuric Ammoniates: [Hg(NH3)2][HgCl3]2 and [Hg(NH3)4](ClO4)2 [Hg(NH3)2][HgCl3]2 ( 1 ) is obtained by saturating an equimolar solution of HgCl2 and NH4Cl with Hg(NH2)Cl at 75 °C. 1 crystallizes in the orthorhombic space group Pmna with a = 591.9(1) pm, b = 800.3(1) pm, c = 1243.3(4) pm, Z = 2. The structure consists of linear cations [Hg(NH3)2]2+ and T‐shaped anions [HgCl3]. The coordination sphere of mercury is ?effectively”? completed to compressed hexagonal bipyramids and distorted octahedra, respectively. Single crystals of [Hg(NH3)4](ClO4)2 ( 2 ) are obtained by passing gaseous ammonia through a solution of mercuric perchlorate, while the solution was cooled to temperatures below 10 °C. 2 crystallizes in the monoclinic space group P21/c with a = 791.52(9) pm, b = 1084.3(2) pm, c = 1566.4(2) pm, β = 120.352(1)°, Z = 4. The structure consists of compressed [Hg(NH3)4]2+ tetrahedra and perchlorate anions. The packing of the heavy atoms Hg and Cl is analogous to the baddeleyite (α‐ZrO2) type of structure.  相似文献   

7.
K2Br(OH) and Rb2Br(OH): Two New Ternary Alkali Metal Halide Hydroxides with a Pronounced Structural Relationship to KOH resp. RbOH Two isotypic compounds K2Br(OH) and Rb2Br(OH) were prepared in the systems KOH/KBr and RbOH/RbBr. Their structures were determined by single crystal X-ray methods: K2Br(OH): P21/m, Z = 2, a = 6.724(1) Å, b = 4.272(4) Å, c = 8.442(2) Å, β = 108.14(2)°, Z(Fo) = 651 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.041/0.047 Rb2Br(OH): P21/m, Z = 2, a = 6.918(3) Å, b = 4.483(2) Å, c = 8.850(5) Å, β = 108.08(6)°, Z(Fo) = 326 mit (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 27, R/Rw = 0.074/0.082. The compounds are built up by chains of [M2(OH)+] connected via Br?. The structure of the chains as well as their orientation to one another show a pronounced relationship to the structures of the room temperature modifications of the isotypic binary hydroxides KOH and RbOH.  相似文献   

8.
Crystal structures of a series of manganese(I) complexes containing tripodal ligands were determined. For [η3-{CH3C(CH2PPh2)2(CH2SPh)-P,P′,S}Mn(CO)3]PF6 ( 1 ): a = 10.856(3) Å, b = 19.698(3) Å, c = 17.596(5) Å, β = 96.17(2)°, monoclinic, Z = 4, P21/c, R(Fo) = 0.068, Rw(Fo) = 0.055 for 3617 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)(CH2SPh)2-P,P′,S}Mn(CO)3]PF6 ( 2 ): a = 9.890(2) Å, b = 20.403(4) Å, c = 10.269(3) Å, β = 117.44(2)°, monoclinic, Z = 2, P2l, R(Fo) = 0.050, Rw(Fo) = 0.037 for 1760 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)2(CH2S)-P,P′,S}Mn(CO)3] ( 4 ): a = 8.191(7) Å, b = 10.495(3) Å, c = 19.858(6) Å, α = 99.61(2)°, β = 96.17(2)°, γ = 92.70(4)°, triclinic, Z = 2, P-I, R(Fo) = 0.048, Rw(Fo) = 0.039 for 2973 reflections with Io > 2σ(Io). There is no significant difference in the bond lengths of Mn-S bonds among three species in their crystal structures [2.325(2) Å in 1; 2.358(4) in 2; 2.380(2) in 4], but the better donating ability of thiolate in complex 4 appears on the lower frequencies of its carbonyl stretching absorptions.  相似文献   

9.
The Crystal Structure of [MoO2F2(2,2′-bipyridyl)] The title compound crystallizes in the space group P21/n with a = 869.6(1), b = 1390.1(3), c = 959.0(1) pm, β = 110.967(5)°, Z = 4; structure determination with 1718 observed independent reflections, R = 0.031. The compound consists of molecules having two cis oxo ligands and a bipyridyl chelate in the MoO2 plane.  相似文献   

10.
Phosphanimine and Phosphoraneiminato Complexes of Beryllium. Crystal Structures of [BeCl2(HNPPh3)2], [BeCl(HNPPh3)2(Py)]Cl, and [Be3Cl2(NPPh3)4] Tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], reacts with lithium phosphoraneiminate, [LiNPPh3]6, in dichloromethane to give the three‐nuclear beryllium phosphoraneiminate [Be3Cl2(NPPh3)4] ( 3 ). As a by‐product the phosphaneimine complex [BeCl2(HNPPh3)2] ( 1 ) can be isolated, which reacts with pyridine to give the ionic complex [BeCl(HNPPh3)2(Py)]Cl ( 2 ). On the other hand, the silylated phosphanimine Me3SiNP(p‐tolyl)3 ( 5 ) does not react with BeCl2 or (Ph4P)2[Be2Cl6] forming the expected phosphoraneiminates. From CH2Cl2 solutions only the amino‐phosphonium salt [(C7H7)3PNH2]Cl ( 4 ) can be obtained. The compounds 1 ‐ 5 are characterized by single X‐ray analyses and by IR spectroscopy. 1 ·C7H8: Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1408.9(2), b = 1750.9(2), c = 1633.2(2) pm, β = 106.50(1)°; R1 = 0.0385. 1 forms a molecular structure with short Be—N distances of 169.8(3) pm. 2 ·Py: Space group P1¯, Z = 4, lattice dimensions at 193 K: a = 969.5(1), b = 2077.1(2), c = 2266.4(2) pm, α = 72.24(1)°, β = 87.16(1)°, γ = 77.42(2)°, R1 = 0.0776. 2 forms ion pairs in which the NH atoms of the phosphaneimine ligands act as hydrogen bridges with the chloride ion. The HNPPh3 ligand realizes short Be—N bonds of 169.0(6) pm, the Be—N distance of the pyridine molecule is 182.5(6) pm. 3 ·3CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1333.2(2), b = 1370.2(2), c = 2151.8(3) pm, α = 107.14(1)°, β = 91.39(1)°, γ = 105.15(1)°, R1 = 0.0917. The structure of the three‐nuclear molecule 3 corresponds with a Be2+ ion which is tetrahedrally coordinated by the nitrogen atoms of two {ClBe(NPPh3)2} chelates. 4 ·CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1206.6(2), b = 1798.0(2), c = 1096.2(1) pm, β = 97.65(1)°, R1 = 0.0535. 4 forms dimeric units in which the NH2 groups of the [(C7H7)3PNH2]+ cations act as hydrogen bridges with the chloride ions to give centrosymmetric eight‐membered rings. 5 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1074.3(2), b = 2132.2(3), c = 1075.5(2) pm, β = 110.68(1)°, R1 = 0.0664. 5 forms molecules with distances PN of 154.6(3), SiN of 168.8(3) pm, and bond angle SiNP of 134.4(2)°.  相似文献   

11.
Single-Crystal Growth and Structure Refinement of RbAu and CsAu Single-crystals of RbAu and CsAu were obtained by the reaction of the alkalimetal azides with gold-powder at 400°C. The structures were determined from X-ray single-crystal diffraktometer data: space group Pm3m, Z = 1; RbAu, a = 4.098(1) Å, R/Rw(w = 1) = 0.011/0.011, N(Fo2) ≥ 3σ(Fo2) = 41 and N(var.) = 4; CsAu, a = 4.258(1) Å, R/Rw(w = 1) = 0.009/0.010, N(Fo2) ≥ 3σ(Fo2) = 34 and N(var.) = 4. Both compounds crystallize in the completely ordered CsCl-type with neglible deviations from the ideal 1:1-composition.  相似文献   

12.
Reactions of MoNCl3 and WNCl3 with Elemental Fluorine. Crystal Structures of [MoO2F2(THF)2] and [WF4(NCl)(CH3CN)] The nitrido chlorides MoNCl3 and WNCl3 as well as WCl4(NCl) react with elemental fluorine forming the N-chloro imido complexes MoF4(NCl) and WF4(NCl), which were characterized by IR spectroscopy. With tetrahydrofurane MoF4(NCl) reacts to give [MoF4(NCl)(THF)], which in THF solution slowly converts into [MoO2F2(THF)2]. From WF4(NCl) with acetonitrile the complex [WF4(NCl)(CH3CN)] is obtained. Both donor acceptor complexes were characterized by crystal structure determinations. [MoO2F2(THF)2] : Space group P21/n, Z = 4, structure solution with 1823 unique reflections, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?40°C: a = 636.2, b = 1119.5, c = 1625.2 pm; β = 93.92(1)º. The compound has a monomeric molecular structure with the fluorine atoms in trans-position to one another and with the oxygen atoms of the THF molecules in trans to the oxo ligands. [WF4(NCl)(CH3CN)] : Space group P21/m, Z = 2, structure solution with 1119 unique reflections, R = 0.038 for reflections with I > 2σ(I). Lattice dimensions at 20°C: a = 511.7, b = 714.9, c = 1002.5 pm; β = 102.59(10)º. The compound has a monomeric molecular structure in which the nitrogen atom of the acetonitrile molecule coordinates in trans-position to the N-chloro imido group W?N? Cl. The structural parameters of this group are WN = 172.2 pm, NCl = 161.1 pm, WNCl = 178.6º.  相似文献   

13.
Unusual Coordination Polyhedra around Oxygen in Li4Cl(OH)3 The pseudobinary system LiOH/LiCl was investigated by X-ray methods. Two compounds, Li4Cl(OH)3 and Li2Cl(OH), were obtained. The crystal structure of Li4Cl(OH)3 solved by single-crystal methods is delt with. For Li2Cl(OH) powder diffraction data are given: Li4Cl(OH)3: P21/m, Z = 2, a = 5.4096(8) Å, b = 7.382(2) Å, c = 6.2076(8) Å, β = 94.40(1)°, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 483, Z (parameter) = 50, R/Rw = 0.022/0.025 Li2Cl(OH): Pmma, Z = 2, a = 7.680(8) Å, b = 4.001(7) Å, c = 3.899(6) Å The hydroxide rich compound crystallizes in a new type of structure which contains puckered layers [Li4(OH)3+] connected via chloride ions.  相似文献   

14.
Single crystals of Ag(Nic)2(NO3) were obtained from an aqueous solution of silver nitrate and nicotine as plate‐like colourless crystals. The crystal structure (monoclinic, P21, Z = 2, a = 933.3(2), b = 1136.8(2), c = 1024.3(2) pm, β = 94.49(2)°) consists of helical chains in which one nicotine molecule bridges with both the pyridine‐N and the pyrrol‐N coordinating and with a second nicotine molecule terminally coordinating with the pyridine‐N. A monodentate nitrate‐O is completing the coordination sphere of Ag+ to a distorted tetrahedron. Ag–N distances (229‐240 pm) attest for a rather strong attraction of the nicotine molecules to Ag(I) and thereby constitute essentially a one‐dimensional, helical coordination polymer according to the formulation Ag(Nic1)2/2(Nic2)1/1(NO3)1/1.  相似文献   

15.
Na5Br(OH)4: Synthesis and Structure of a Compound in the System NaOH/NaBr The pseudobinary system NaOH/NaBr is investigated by X-ray methods. The structure of the compound Na5Br(OH)4 was solved by single crystal data: Na5Br(OH)4: Pnma, Z = 8, a = 11.846(2) Å, b = 18.782(4) Å, c = 6.431(1) Å, Z(Fo) = 1 202 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 100, R/Rw = 0.030/0.035 The compound crystallizes in a new type of structure. Pairs of octahedra around O by 5 Na and 1 H to [Na5(OH)]2 are orientated in such a way to one another that two ions OH? form a parallelogram hinting to unusual bent hydrogen bridge bonding.  相似文献   

16.
Single crystals of mercuric bis(N‐imino‐methyl‐formamidate), Hg(Imf)2, were obtained from aqueous solutions of 1,2,4‐triazole and Hg(NO3)2·2H2O. The crystal structure [monoclinic, P21/c (no. 14), a = 499.6(2), b = 1051.2(4), c = 711.1(3) pm, β = 117.55(1)°, Z = 2, R1 for 890 reflections with I0>2σ(I0): 0.0369] contains linear centrosymmetric Hg(Imf)2 molecules with Hg–N distances of only 203.5(7) pm. Two plus two intra‐ and intermolecular nitrogen atoms add to an effective coordination number of 6.  相似文献   

17.
Colourless single crystals of the anhydrous mercurous chlorate were grown from a solution of mercuric oxide (HgO) in chloric acid (HClO3) in the presence of elemental mercury. The crystal structure (monoclinic, P21/n, Z = 4, a = 816.59(12), b = 641.02(5), c = 1290.3(2) pm, β = 97.506(12)°, R(all) = 0.0317) contains trans‐O2ClO‐Hg‐Hg‐OClO2 molecules with a Hg‐Hg distance of 251.03(4) pm, Hg‐O (bond) distances of 218 and 224 pm and Hg‐Hg‐O angles of 177 and 165°, respectively.  相似文献   

18.
Rb2I(OH): A Hydroxide Iodide in the System RbOH/RbI The pseudobinary system RbOH/RbI was investigated by X-ray methods. The crystal structure of Rb2I(OH) was solved by single crystal data: Rb2I(OH): Pnma, Z = 4, a = 7.748(1) Å, b = 5.654(2) Å,c = 13.254(2) Å Z(Fo) with (Fo)2 ? 3σ = (Fo)2 = 449, Z (parameter) = 25, R/Rw = 0.021/0.023 Rb2I(OH) crystallizes in a new type of structure, built up by a three dimensional network of [Rb2(OH)+] containing the iodide ions.  相似文献   

19.
LiLa2F3(SO4)2 and LiEr2F3(SO4)2: Fluoride‐Sulfates of the Rare‐Earth Elements with Lithium The reaction of LiF with the anhydrous sulfates M2(SO4)3 (M = La, Er) in sealed gold ampoules yields single crystals of the pseudo quaternary compounds LiLa2F3(SO4)2 and LiEr2F3(SO4)2. According to X‐ray single crystal investigations, LiLa2F3(SO4)2 crystallizes with the monoclinic (I2/a, Z = 4, a = 828.3(2), b = 694.7(1), c = 1420.9(3) pm, β = 95.30(2)°, Rall = 0.0214) and LiEr2F3(SO4)2 with the orthorhombic crystal system (Pbcn, a = 1479.1(2), b = 633.6(1), c = 813.7(1) pm, Rall = 0.0229). A common feature of both structures is a dimeric unit of metal atoms connected via three fluoride ions. This leads to relatively short metal‐metal distances (La3+–La3+: 389 pm, Er3+–Er3+: 355 pm). In LiLa2F3(SO4)2, Li+ is surrounded by four oxygen atoms of four sulfate groups and one fluoride ion in form of a trigonal bipyramid, in LiEr2F3(SO4)2 two further fluoride ligands are attached.  相似文献   

20.
Sulfur Bridged Copper Complexes with dye Ligands By a three step synthesis the dye Et2N-C6H4-NN-C6H4-SSiMe3 ( 1 ) (azo-SSiMe3) can be prepared, which reacts with copper(I) chloride under the cleavage of Me3SiCl forming different sulphur bridged complexes. Depending on the presence of different phosphine ligands the compounds [Cu2(S-azo)2(PEt3)3] ( 2 ), [Cu2(S-azo)2(PnPr3)3] ( 3 ) and [Cu3(S-azo)3(PPh3)4] ( 4 ) can be obtained. These as well as the silylated dye 1 could be isolated and characterised as single crystals ( 1 : space group , a = 769, 2(2) pm, b = 943, 0(2) pm, c = 1419, 4(3) pm, α = 89, 09(3)°, β = 76, 40(3)°, γ = 87, 40(3)°, Z = 2; 2 : space group P21/c, a = 1142, 3(2) pm, b = 2233, 7(5) pm, c = 2391, 8(5) pm, β = 102, 84(3)°, Z = 4; 3 : space group P21/c, a = 1076, 0(2) pm, b = 1858, 4(4) pm, c = 3284, 1(7) pm, β = 95, 10(3)°, Z = 4; 4 : space group , a = 1353, 9(3) pm, b = 1615, 8(3) pm, c = 29966, 6(3) pm, α = 92, 24(3)°, β = 97, 48(3)°, γ = 98, 83(3)°, Z = 2). The UV-VIS spectra of 1 - 4 are dominated by a strong absorption of the diethylamino azobenzene group. Compared to 1 compounds 2 and 3 show a strong bathochromic shift of the absorption maximum, 4 shows a weaker shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号