共查询到20条相似文献,搜索用时 15 毫秒
1.
Liang Liao Yi Pang Liming Ding Frank E. Karasz 《Journal of polymer science. Part A, Polymer chemistry》2004,42(8):1820-1829
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004 相似文献
2.
Sheng‐Hsiung Yang Shiang‐Ying Chen Yu‐Chun Wu Chain‐Shu Hsu 《Journal of polymer science. Part A, Polymer chemistry》2007,45(15):3440-3450
A new series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) derivatives containing dendritic side groups were synthesized. Different generations of dendrons were integrated on the pendant phenyl ring to investigate their effect on optical and electrical properties of final polymers. Homopolymers can not be obtained via the Gilch polymerization because of sterically bulky dendrons. By controlling the feed ratio of different monomers during polymerization, dendron‐containing copolymers with high molecular weights were obtained. The UV–vis absorption and photoluminescent spectra of the thin films are pretty close; however, quantum efficiency is significantly enhanced with increasing the generation of dendrons. The electrochemical analysis reveals that hole‐injection is also improved by increasing dendritic generation. Double‐layer light‐emitting devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated. High generation dendrons bring benefit of improved device performance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3440–3450, 2007 相似文献
3.
Liang Liao Ali Cirpan Liming Ding Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(7):2307-2315
New poly(phenylene vinylene) derivatives with a 5‐diphenylamino‐1,3‐phenylene linkage (including polymers 2 , 3 , and 5 ) have been synthesized to improve the charge‐injection properties. These polymers are highly photoluminescent with fluorescent quantum yields as high as 76% in tetrahydrofuran solutions. With effective π‐conjugation interruption at adjacent m‐phenylene units, chromophores of different conjugation lengths can be incorporated into the polymer chain in a controllable manner. In polymer 2 , the structural regularity leads to an isolated, well‐defined emitting chromophore. Isomeric polymer 3 of a random chain sequence, however, allows the effective emitting chromophores to be joined in sequence by sharing a common m‐phenylene linkage (as shown in a molecular fragment). Double‐layer light‐emitting‐diode devices using 2 , 3 , and 5 as emitting layers have turn‐on voltages of about 3.5 V and produce blue‐green emissions with peaks at 493, 492, and 482 nm and external quantum efficiencies up to 1.42, 0.98, and 1.53%, respectively. In comparison with a light‐emitting diode using 2 , a device using 3 shows improved charge injection and displays increased brightness by a factor of ~3 to 1400 cd/m2 at an 8‐V bias. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2307–2315, 2006 相似文献
4.
Liang Liao Yi Pang Liming Ding Frank E. Karasz Philip R. Smith Michael A. Meador 《Journal of polymer science. Part A, Polymer chemistry》2004,42(23):5853-5862
Soluble yellow/orange‐emitting poly[tris(2,5‐dihexyloxy‐1,4‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)] derivatives ( 6 ) were synthesized and characterized. These polymers contained oligo(p‐phenylene vinylene) chromophores of equal conjugation length, which were jointed via a common m‐phenylene unit. An optical comparison of 6 and its model compound ( 8 ) at room temperature and low temperatures revealed the similarity in their absorption and fluorescence band structures. The vibronic band structure of 6 was assigned with the aid of the spectroscopic data for 8 at the low temperatures. 6 was electroluminescent and had an emission maximum wavelength at approximately 565 nm. With the device indium tin oxide/PEDOT/ 6 /Ca configuration, the polymer exhibited an external quantum efficiency as high as 0.25%. Simple substitution on m‐phenylene of 6 raised the electroluminescence output by a factor of about 10. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5853–5862, 2004 相似文献
5.
Liang Liao Liming Ding Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2005,43(13):2800-2809
Blue‐emitting poly{[5‐(diphenylamino)‐1,3‐phenylenevinylene]‐alt‐(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)} ( 3 ), poly{[5‐bis‐(4‐butyl‐phenylamino)‐1,3‐phenylenevinylene]‐alt‐(1,3‐phenylene vinylene)} ( 4 ), and poly(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene) ( 5 ) were synthesized by the Wittig–Horner reaction. Although polymers 3–5 possess fluorescent quantum yields of only 13–34% in tetrahydrofuran solution, their films appear to be highly luminescent. Attachments of substituents tuned the emission color of thin films to the desirable blue region (λmax = 462–477 nm). Double‐layer light‐emitting‐diode devices with 3 and 5 as an emissive layer produced blue emission (λem = 474 and 477 nm) with turn‐on voltages of 8 and 11 V, respectively. The external quantum efficiencies were up to 0.13%. © 2005Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2800–2809, 2005 相似文献
6.
Liang Liao Yi Pang Liming Ding Frank E. Karasz 《Journal of polymer science. Part A, Polymer chemistry》2003,41(17):2650-2658
Poly[(m‐phenylene vinylene)‐alt‐(o‐phenylene vinylene)]s with different contents of cis‐/trans‐CH?CH ( 3 and 6 ) have been synthesized through Wittig condensation. The polymers exhibit good solubility in common organic solvents such as toluene and tetrahydrofuran. A comparison of the optical properties has been made between 3 and its phenyl regioisomers containing either p‐phenylene or m‐phenylene units. The results show that the regiochemistry of the phenyl ring can be a useful tool for tuning the emission color of π‐conjugated polymers because the extension of π conjugation can only partially be achieved through an o‐phenylene bridge. Although both polymers 3 and 6 exhibit comparable low fluorescence quantum efficiencies (≈0.18) in solution, their films are highly luminescent, showing a broad emission band near 456 nm (blue color). Electroluminescence results show that the device of polymer 3 , which has a higher content of trans‐CH?CH linkages, is about 20 times more efficient than that of 6 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2650–2658, 2003 相似文献
7.
Sheng‐Hsiung Yang Hsing‐Chuan Li Chien‐Kai Chen Chain‐Shu Hsu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(23):6738-6749
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006 相似文献
8.
Joo Hyun Kim Nam‐Ho You Hoosung Lee 《Journal of polymer science. Part A, Polymer chemistry》2006,44(12):3729-3737
A series of statistical copolymers (poly[(9,9‐di‐n‐hexylfluorene)‐co‐2‐{2,6‐bis‐[2‐(4‐diphenylaminophenyl)vinyl]pyran‐4‐ylidene}malononitrile) were synthesized by the Suzuki coupling reaction. The copolymers showed absorption bands at 379 and 483–489 nm, which were attributed to the oligofluorene segments and the segments containing 2‐[2,6‐bis(2‐{4‐[(4‐bromophenyl)phenylamino]phenyl}vinyl)pyran‐4‐ylidene]malononitrile ( 3 ), respectively. The absorption band around 483–489 nm increased with the feed ratio of 3 . The photoluminescence (PL) spectra of the copolymers showed emission bands at 420 and 573–620 nm. As the feed ratio of 3 increased, the PL emission in the longer wavelength region redshifted, and the intensity increased as well. The electroluminescence (EL) spectrum of the copolymers showed a very weak emission at 420 nm. The PL and EL emission colors redshifted dramatically with the increase in the feed ratio of 3 . The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the model compound (2‐{2,6‐bis[2‐(4‐diphenylaminophenyl)vinyl]pyran‐4‐ylidene}malononitrile) were determined to be ?5.34 and ?3.14 eV, respectively. It was concluded that energy transfer took place from the oligofluorene blocks to the segments containing 3 and that direct charge trapping occurred in the segments containing 3 during the EL operation. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of the copolymer (x = 0.63, y = 0.37) containing 10 mol % 3 were very close to those (x = 0.67, y = 0.33) for National Television System Committee (NTSC) red with a maximum photometric power efficiency of 0.27 cd/A. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3729–3737, 2006 相似文献
9.
Hoon‐Je Cho Do‐Hoon Hwang Jong‐Don Lee Nam‐Sung Cho Sang‐Kyu Lee Jonghee Lee Young Kwan Jung Hong‐Ku Shim 《Journal of polymer science. Part A, Polymer chemistry》2008,46(3):979-988
Novel blue‐emitting germanium‐containing poly(p‐phenylenevinylene) (PPV) derivatives with well‐defined conjugation lengths were synthesized via Wittig‐condensation polymerizations. The polymers can be color‐tuned by the introduction of various chromophores into the PPV‐based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red‐shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979–988, 2008 相似文献
10.
11.
Young Kwan Jung Jaemin Lee Sang Kyu Lee Hoon‐Je Cho Hong‐Ku Shim 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4611-4620
Two alternating copolymers, poly[(2,5‐di(2‐thienyl)‐pyridine‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)], PFO‐TPy25T, and poly[(2,6‐di(2‐thienyl)‐pyridine‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)], PFO‐TPy26T, were synthesized by the Pd‐catalyzed Suzuki polymerization method. The pyridine units are present as trimeric monomers in these copolymers and have different connectivities to their two neighboring thiophenes, para‐ and meta‐linkages. We investigated the variations in the optical and electrochemical properties of the copolymers that arise from these different connectivities. The two polymers exhibit 5% weight loss above 410 °C and high glass transition temperatures (Tg: 113 °C for PFO‐TPy25T, 142 °C for PFO‐TPy26T). The UV–vis absorption maximum peaks of PFO‐TPy25T and PFO‐TPy26T in the solid state were found to be 449 and 398 nm respectively, with photoluminescence maximum peaks in the solid state of 573 and 490 nm respectively. Using cyclic voltammetry, we determined their energy band gaps: 3.08 eV for PFO‐TPy25T and 3.49 eV for PFO‐TPy25T. The cyclic voltammetry study of these polymers revealed that there are some differences. The electroluminescence (EL) properties of the copolymers were measured for the device configuration of ITO/PEDOT/polymers/Ca/Al. The device fabricated with the polymer containing 2,5‐pyridine exhibits pale orange emission, whereas the device fabricated with the polymer containing 2,6‐pyridine exhibits pale blue emission. The EL device fabricated with PFO‐TPy25T has a higher brightness (2010 cd/m2) and external quantum efficiency (0.1%) than the PFO‐TPy26T device (260 cd/m2, 0.008%), because it has a smaller energy barrier to the injection of charges from PEDOT and Ca into the HOMO and LUMO levels. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4611–4620, 2006 相似文献
12.
Wen‐Fen Su Kun‐Ming Yeh Yun Chen 《Journal of polymer science. Part A, Polymer chemistry》2007,45(18):4377-4388
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007 相似文献
13.
Liang Liao Yi Pang Liming Ding Frank E. Karasz 《Journal of polymer science. Part A, Polymer chemistry》2003,41(20):3149-3158
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003 相似文献
14.
Fushun Liang Takashi Kurata Hiroyuki Nishide Junji Kido 《Journal of polymer science. Part A, Polymer chemistry》2005,43(23):5765-5773
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005 相似文献
15.
Liang Liao Liming Ding Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(2):303-316
Poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)]s ( 8 ) and poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)]s ( 10 ) were synthesized by the Wittig reaction to provide materials containing 45–62% cis‐vinylene bonds. The optical characteristics of 8 and 10 were compared with those of their respective isomers, 3 and 4 , the cis‐vinylene contents of which were significantly lower (9–16%). Although a greater fraction of cis‐CH?CH linkages caused the absorption maximum (λmax) of 8 and 10 to be slightly blueshifted (by ~3–6 nm) from that of 3 and 4 , the impact of the vinylene bond geometry appeared to be negligible on their fluorescence spectra. The fluorescence quantum efficiencies of 8 and 10 were estimated to be approximately 0.25 and 0.72, respectively. Both 8 (λmax ≈ 445 or 462 nm) and 10 (λmax ≈ 480 or 506 nm) were electroluminescent, showing effective color tuning by the controlled insertion of m‐phenylene moieties. The external electroluminescence quantum efficiencies were determined to be 4.26 × 10?3% for 8 and 0.63% for 10 . The cis/trans‐vinylene bond ratio had a great impact on the electroluminescence device performance of 8 but a much smaller impact on the performance of 10 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 303–316, 2004 相似文献
16.
Sutheerat Changsarn Rakchart Traiphol Thanutpon Pattanatornchai Toemsak Srikhirin Pitt Supaphol 《Journal of Polymer Science.Polymer Physics》2009,47(7):696-705
In this contribution, we report a versatile method for tuning optical properties of poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene) (MEH‐PPV) in its solution with 1,2‐dichloroethane, accomplished by reacting with pyridinium formate (PF), a volatile organic salt. We can systematically control the positions of absorption and photoluminescent (PL) spectra of MEH‐PPV by adjusting the concentration of PF in the solution. The addition of 10 vol % PF caused a blue‐shift in the absorption spectra by about 65 nm. When the concentration of PF decreased to 0.1 vol %, the blue‐shift occurred to a lesser extent, about 25 nm. The measurements of PL spectra showed similar behaviors. The λmax shifted from 558 nm to 546 and 552 nm when 10 and 0.1 vol % of PF were added, respectively. The changes of PL colors from orange to yellow and green, respectively, were observed by naked eyes. Structural investigation by nuclear magnetic resonance and Fourier‐transformed infrared spectroscopy indicated that the changes of the optical properties were due to chemical modifications along the main chain and the side groups of MEH‐PPV. These results implied a simple route for engineering the HOMO–LUMO energy gap of MEH‐PPV, which could be utilized in advanced applications such as organic light‐emitting devices and solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 696–705, 2009 相似文献
17.
Liang Liao Ali Cirpan Qinghui Chu Frank E. Karasz Yi Pang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(10):2048-2058
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058 相似文献
18.
Rupei Tang Yutao Chuai Caixia Cheng Fu Xi Dechun Zou 《Journal of polymer science. Part A, Polymer chemistry》2005,43(14):3126-3140
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005 相似文献
19.
Honghao Sun Ze Liu Yufeng Hu Lixiang Wang Dongge Ma Xiabing Jing Fosong Wang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2124-2129
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004 相似文献
20.
Sung‐Ho Jin Dae‐Sung Koo Hwang‐Un Seo Young‐Inn Kim Yeong‐Soon Gal Dong‐Kyu Park 《Journal of polymer science. Part A, Polymer chemistry》2004,42(10):2347-2355
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004 相似文献