首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of rigid poly(p‐phenylene ethynylene)s ( PPE1 – PPE4 ) with biphenyl‐ ( M1–M3 ) and phenyl‐ ( M4 ) side groups is prepared from appropriately functionalized monomers. Herein, the solution and solid state absorption studies show the polymers have adopted twisted and rigid conformations, as supported by deep HOMO energy levels (?5.76 to ?5.81 eV). The absorption maxima of PPE1–PPE3 are shifted to shorter wavelength (λmax = 375–381 nm) as compared to linear poly(p‐phenylene ethynylene)s (446 nm), implying a nonplanar conformation. The self‐assembly of polymers into fibers is examined using scanning electron microscopy. The fibers are not observed in PPE4 with short phenyl side group, suggesting the important role of the interplay between rigidity, position, and size of the side chains toward the formation of fibers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3652–3662  相似文献   

2.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

3.
Starting from the pyrylium salt and following a facile synthetic route, we synthesized and polymerized 4,4″‐diiodo‐2′,6′‐di[4‐(2′‐ethylhexyl)oxy]phenyl‐p‐terphenyl with p‐divinylbenzene or p‐diethynylbenzene. The resulting polymers had moderate molecular weights, were amorphous, and dissolved in tetrahydrofuran and chloroform, with glass‐transition temperatures of 120–131 °C. The polymers behaved as violet‐blue‐emitting materials with photoluminescence maxima around 420 and 450 nm in solution and in thin films, respectively. They possessed well‐defined chromophores resulting from steric interactions in the polymer chain. The photoluminescence quantum yields were up to 0.29. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2591–2600, 2002  相似文献   

4.
Summary: Conjugated poly(p‐phenylene ethynylene) networks with interesting optoelectronic properties were synthesized by the palladium‐catalyzed polycondensation of 2,5‐diiodo‐4‐[(2‐ethylhexyl)oxy]methoxybenzene, and 1,4‐diethynyl‐2,5‐bis‐(octyloxy)benzene, with 1,2,4‐tribromobenzene as cross‐linker. The cross‐linker concentration was varied and materials with different cross‐link densities were prepared. The materials were processed into films by simultaneous polymerization and shaping. An alternative approach is to synthesize these cross‐linked polymers in the form of spherical particles, which can be processed from dispersions.

Schematic representation of the cross‐linking process.  相似文献   


5.
1,4‐Dibromobenzenes carrying nonpolar hexoxy and polar oligo(ethylene glycol) side chains were subjected to Suzuki polycondensation with a benzene‐1,4‐bisboronic acid ester to produce high‐molar‐mass poly(para‐phenylene)s. The molar masses were determined with size exclusion chromatography with conventional polystyrene and universal calibration. These novel amphiphilically equipped rigid‐rod polymers have the potential to segregate lengthwise into polar and nonpolar domains, a property that has only rarely been described, and promise to exhibit novel interesting supramolecular properties. The oligo(ethylene gylcol) side chains terminate with a silyl‐protected alcohol group, and its deprotection on the polymer was proven to proceed quantitatively. This not only led to a further polarity increase but allows us to attach even more polar (e.g., charged) units in future projects. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2879–2889, 2003  相似文献   

6.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

7.
A sterically encumbered m‐terphenyl oxacyclophane substituted with two aryl iodide substituents has been prepared as a versatile monomer for the preparation of π‐conjugated polymers. The monomer has been used to prepare a poly(p‐phenylene ethynylene) derivative (P1) incorporating oxacyclophane units as canopies that shield one side of the π‐system from inter‐chain interactions. The photophysical properties of P1 in dilute solution compare well to those of a poly(p‐phenylene ethynylene) derivative (P2) that lacks the canopy. The presence of the steric canopy leads to a diminished inter‐chain interaction in the solid state and enhances the kinetic response of P1 to vapors of nitro‐organics such as TNT, presumably by increasing the permeability of P1 to these analytes over that of P2.

  相似文献   


8.
The preparation and characterization of two types of ionic poly(p‐phenylene terephthalamide) (PPTA) is described. A sufficient number of ionic groups were added to render modified PPTA soluble in dimethylsulfoxide (DMSO). In one type, a hydrogen atom of the amide group was replaced by an ionic propanesulfonate group. In the other type, one of the hydrogen atoms on the phenylene ring was replaced by an ionic sulfonate group. The ionic PPTAs in DMSO showed an upturn in viscosity at very low concentrations that was characteristic of the polyelectrolyte behavior. Fourier transform infrared spectra of these samples were also studied. When the ionic group was attached at the end of the short propane side chain, the intensity of both the free and hydrogen‐bonded N? H stretching mode was reduced compared with that of PPTA. Depending on the location of the ionic group, there were some changes in the intensity and wave number of the asymmetric and symmetric vibrations of the ionic SO group and the stretching mode of the carbonyl group. In both ionic PPTAs, there was an upward shift in the frequency of the symmetric vibrations of the sulfonate ion when the counterion, having been monovalent, became divalent. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2653–2663, 2001  相似文献   

9.
Well‐defined poly(m‐phenylene) (PMP), which is poly(1,3‐dibutoxy‐m‐phenylene), was successfully synthesized via Grignard metathesis polymerization. PMP with a reasonably high number‐average molecular weight (Mn) of 25,900 and a very low polydispersity index of 1.07 was obtained. The polymerization of a Grignard reagent monomer, 1‐bromo‐2,4‐dibutoxy‐5‐chloromagnesiobenzene, proceeded in a chain‐growth manner, probably due to the meta‐substituted design producing a short distance between the MgCl and Br groups and thereby making a smooth nickel species (? C? Ni? C? ) transfer to the intramolecular chain end (? C? Ni? Br) over a benzene ring. PMP showed a good solubility in the common organic solvents, such as tetrahydrofuran, CH2Cl2, and CHCl3. Furthermore, a new block copolymer comprised of PMP and poly(3‐hexylthiophene) was also prepared. The tapping mode atomic force microscopy image of the surface of the block copolymer thin film on a mica substrate showed a nanofibril morphology with a clear contrast. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

10.
A consistent picture is presented of the mechanistic details and intermediates of the Gilch polymerization leading to poly(p‐phenylene vinylenes) (PPVs). In‐situ generated p‐quinodimethanes are shown to be the real monomers, and spontaneous formation of the initiating radicals is effected by dimerization of some of these monomers to dimer diradicals, the latter also being the reason why significant amounts of [2.2]paracyclophanes are formed as side‐products. Chain propagation predominantly proceeds by radical chain growth, occasionally interrupted by polyrecombination events between the growing α,ω‐macro‐diradicals. Based on this knowledge, oxygen is identified as a very efficient molar‐mass regulating agent, and the temporary gelation of the reaction mixtures is interpreted to be the consequence of a very high entanglement of the polymers immediately after their formation. Last but not least, it is rationalized why the usually considered constitutional defects in Gilch PPVs might not be the only and most relevant ones with respect to the efficiency and durability of the organic light emitting devices produced thereof, and why cis‐configurated halide‐bearing vinylene moieties should be perceived as being among the most critical candidates. These considerations result in the recommendation of straightforward measures that should lead to clearly improved PPVs.

  相似文献   


11.
2,6‐bis(4‐Distyrylpyridine) ( 1 ) was synthesized by the condensation of 2,6‐dimethylpyridine with 4‐bromobenzaldehyde. Two new series of soluble random or alternating polyfluorenes ( PF‐Py ) and poly‐p‐phenylenes ( PP‐Py ) with various compositions were prepared by Suzuki coupling utilizing 1 as a comonomer. These polymers showed optical band gaps of 3.00–3.07 eV and photoluminescence (PL) quantum yields in solution of 0.37–0.91 for PF‐Py and 0.29–0.38 for PP‐Py . Polymers PF‐Py emitted blue light with PL maximum at 410–424 nm in solution and 406–428 nm in thin films that was red shifted with increasing distyrylpyridine content. Polymers PP‐Py behaved as blue emitters both in solution and in solid state, with PL maximum at 416–436 nm. The optical properties of these polymers could be tuned by the reversible protonation–deprotonation process of the pyridine ring. The emitted color of the polymers in solution and thin film could be changed continuously between blue and green (PL maximum up to about 520 nm) by exposing the polymers to the acid or base environment. Thin films of PF‐Py displayed excellent color stability with a small red shift of 10 nm but without additional emission band in the long wave region of the spectrum, even after being annealed at high temperature for a long time. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4486–4495, 2005  相似文献   

12.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
A chemical sensor for metal ions was fabricated based on a water‐soluble conjugated polymer–graphene oxide (GO) composite. Water‐soluble poly(p‐phenylene ethynylene) (PPE) with sulfonic acid side chain groups was used to prepare a very stable water‐soluble PPE–GO composite with strong π–π interactions in water. The relationship between the optical properties and metal ion sensing capability of the PPE–GO composite in aqueous solution was investigated. Addition of metal ions enhanced the fluorescence intensity of the composite, and, in particular, the composite enabled the fluorescence detection of Cu2+ in aqueous solutions with high selectivity and sensitivity. Therefore, this conjugated polymer–GO composite sensor system was found to be an effective turn‐on type chemical sensor for metal ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Series of poly(p‐phenylene)s (PPPs) containing terphenyl mesogenic pendants with cyano and methoxy terminal groups by flexible ? COO(CH2)6O? bridge [ P(CN) and P(OCH3) ] are synthesized through Yamamoto polycondensation with Ni‐based complex catalysts. The effects of the structural variation on their properties, especially their mesomorphism, ultraviolet–visible (UV), and photoluminescence behaviors, are studied. All of the polymers are stable, losing little of their weights when heated to ≥340 °C. The polymers show good solubility and can be dissolved in common solvents. P(CN) with cyano terminal group shows enantiotropic SmAd phase with bilayer packing arrangement, while P(OCH3) with methoxy terminal group readily forms nematic and SmAd phase when heated and cooled. Photoexcitation of their solutions induces strong blue light emission. Compared with P(OCH3) , the light‐emitting bands of polymer P(CN) is slightly redshifted to 428 nm and the emission intensity of P(CN) is much stronger, due to the existence of donor–acceptor pairs. More interestingly, both of the polymers exhibit obvious Cotton effect on the CD spectra, resulting from the predominant screw sense of the backbone. This indicates that the bulky mesogenic pendant orientating around the backbone will force the main chain with helical conformation in the long region due to steric crowdedness. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4723–4735, 2009  相似文献   

15.
Two novel poly(p‐phenylene vinylene) polymers, which carried side substituents with cyano groups or 1,3,4‐oxadiazole, were synthesized by Heck coupling. They consisted of alternating conjugated segments and nonconjugated aliphatic spacers. The polymers had moderate molecular weights, were amorphous, and dissolved readily in tetrahydrofuran and halogenated organic solvents. They were stable up to approximately 340 °C in N2 and 290 °C in air, and the anaerobic char yield was around 60% at 800 °C. The polymer with cyano side groups emitted blue light in solutions and thin films with identical photoluminescence (PL) maximum at 450 nm; this supported the idea that chain interactions were hindered even in the solid state. The PL maximum of this polymer in thin films was blueshifted upon annealing at 120 °C, indicating a thermochromic effect as a result of conformational changes in the polymer backbone. The polymer containing side substituents with oxadiazole rings emitted blue light in solutions with a PL maximum at 474 nm and blue‐greenish light in thin films with a PL maximum at 511 nm. The PL quantum yields of the polymers in tetrahydrofuran were 0.13–0.24. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1768–1778, 2004  相似文献   

16.
Poly(p‐phenylene vinylene) (PPV), poly(2,5‐dioctyl‐p‐phenylene vinylene) (PDOPPV), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene] (MEHPPV) were synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran containing 1,4‐bis(bromomethyl)benzene, 1,4‐bis(chloromethyl)‐2,5‐dioctylbenzene, or 1,4‐bis(chloromethyl)‐2‐methoxyl‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 2 mm. The experimental results demonstrated that the reaction conversions of PPV and PDOPPV were fairly high (~65%), but the conversion of MEHPPV was only 45%. Moreover, gelation was found in the polymerization processes. As a result, PPV was insoluble and PDOPPV and MEHPPV were partially soluble in the usual organic solvents, such as tetrahydrofuran and chloroform. Soluble PDOPPV and MEHPPV were obtained with chloromethylbenzene or bromomethylbenzene as a retardant regent. The molar mass of soluble PDOPPV was measured to be 2 × 104 g mol?1, and that of MEHPPV was 6 × 104 g mol?1. A thin, compact film of MEHPPV was formed via spin coating, and it emitted a yellow light. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 449–455, 2003  相似文献   

17.
Synthesis of n‐type organic semiconductors with high electron mobilities, good environmental stability, and good processability is an urgent task in current organic electronics. This is because most of π‐conjugated materials are p‐type and prefer to transport positive hole carriers. In this article, a series of new dicarboxylic imide‐substituted poly(p‐phenylene vinylenes) (DI‐PPVs) were first synthesized. They exhibited a high electron affinity of 3.60 eV and thus are able to transport electrons. The polymers showed tunable solubility in common organic solvents and high chemical and thermal stability. They remain rigidity of the PPV backbone, and strong interchain π‐stacking was observed in thin films by X‐ray diffraction measurement. All these suggested that these polymers could serve as good candidates as n‐type semiconductors in organic electronic devices such as n‐channel field‐effect transistors and all polymer‐based solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 186–194, 2010  相似文献   

18.
《先进技术聚合物》2018,29(6):1727-1732
Using ionic liquids (ILs) as the reaction solvent for the synthesis of prepolymer polyamide of poly(p‐phenylene benzoxazole) (PBO) was investigated. The optimum condition of prepolymer preparation was determined in ILs. A series of 1,3‐dialkylimidazolium ILs were used to be the reaction media of the polycondensation. The relationship between the molecular weight of prepolymer and the structure of ILs was analysed by changing the structure of the cation and species of anion of ILs. In order to prove the feasibility of the transformation, the prepolymer was used to prepare PBO in polyphosphoric acid media, and the conversion process was analyzed. The spinnability of the PBO solution was explored by the preparation of PBO fibers. The basic mechanical properties of PBO single fiber were tested. In a word, using 1,3‐dialkylimidazolium ILs as the reaction solvents was feasible for the synthesis of high‐molecular‐weight PBO prepolymer, which could be a promising PBO preparation method.  相似文献   

19.
The origin of double melting behavior of poly(p‐phenylene succinate) (PPSc) was investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction. As‐polymerized PPSc showed two melting peaks: the low melting (LM) and high melting (HM) peaks at 286 and 311 °C, respectively. When PPSc was annealed at 270 °C, the LM peak constantly shifted toward higher temperatures and grew in its area with annealing time, and eventually merged into the HM peak located at 308 °C. X‐ray diffractograms of PPSc annealed at 270 °C became sharper with increasing the annealing time while the peak positions did not change. The X‐ray diffractograms obtained from the LM and the HM peak exhibited the same diffraction peaks. It was concluded from these results that the double melting behavior of PPSc is due to the distribution of crystals having the same crystal form but differing in size and perfection. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1868–1871, 2000  相似文献   

20.
New through‐space cyano‐substituted poly(p‐arylenevinylene)s containing a [2.2]paracyclophane unit were synthesized by the Knoevenagel reaction. Polymers 5 and 7 have cyano groups at α‐positions and β‐positions from the dialkoxyphenylene unit, respectively. Their optical and electrochemical behaviors were investigated in detail in comparison with their model compounds. Polymers 5 and 7 exhibited through‐space conjugation via the cyclophane units. Polymer 5 showed greenish blue emission (λmax = 477 nm) in diluted solution with fluorescence quantum efficiency (?F) of only 0.007, whereas polymer 7 emitted in the bluish green region (λmax = 510 nm) with ?F of 0.32. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5979–5988, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号