首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prepared new semiaromatic polyimides from alicyclic dianhydrides and aromatic diamines containing adamantyl and biadamantyl units. Polycondensations were performed in 1‐methyl‐2‐pyrrolidinone at room temperature for 7 h and then 80 °C for 23 h, giving poly(amic acid)s with inherent viscosities up to 0.58 dL/g. Poly(amic acid)s were converted to corresponding poly(imide)s by thermal treatment. Poly(imide)s showed relatively high thermal stability (5% weight loss around 450 °C) and low dielectric constants (2.69–2.79). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 144–150, 2004  相似文献   

2.
A new series of fully aliphatic polyimide (API) based on a novel aliphatic dianhydride monomer‐2,2′‐(1,4‐piperazinediyl)‐disuccinic anhydride (PDA), in which two units of succinic anhydride have been connected by an aliphatic heterocyclic piperazine spacer that possesses aminomethylene (‐NCH2) moiety in the aliphatic/alicylic backbone capable of inducing charge transfer (CT) interactions in the polyimide network, was successfully synthesized. The APIs were soluble in common polar organic solvents. The polyimide films of PDA with alicyclic diamines were almost colorless. T10 (temperature of 10% weight loss) of APIs were ranged from 299–418 °C and Tg of API3‐API6 were in the temperature range of 170 to 237 °C. The light‐colored polyimide films of API3‐API6 possessed good mechanical properties with tensile strength of 54–72 Mpa, tensile modulus of 1.6–2.3 Gpa and elongation at break of 4–9%. The polyimide films of API3‐API6 were highly flexible and free‐standing which is quite rare in fully APIs. The dielectric constant of one of the synthesized API (API4) was as low as 2.14. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2316–2328  相似文献   

3.
A novel diamine, bis(3‐aminophenyl)‐4‐(1‐adamantyl)phenoxyphenyl phosphine oxide (mDAATPPO), was synthesized via the Williamson ether reaction of 4‐(1‐adamantyl)phenol and bis(3‐nitrophenyl)‐4‐fluorophenyl phosphine oxide, followed by reduction. The phenol group was prepared by the Friedel–Crafts reaction of 1‐bromoadamantane and phenol, whereas the phosphine oxide group was synthesized by the Grignard reaction of 1‐bromo‐4‐fluorobezene and diphenyl phosphinic chloride, followed by nitration. The monomer and its intermediate compounds were characterized with Fourier transform infrared, NMR, and melting‐point apparatus. The monomer was then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic dianhydride, and pyromellitic dianhydride by the conventional two‐step synthesis: the preparation of poly(amic acid) followed by solution imidization. The molecular weights of the polyimides were controlled to 20,000 g/mol by off‐stoichiometry, and the synthesized polyimides were characterized with Fourier transform infrared, NMR, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. In addition, the solubility, intrinsic viscosity, dielectric constant, and birefringence of the polyimides were evaluated. Novel polyimides with mDAATPPO exhibited good solubility, high glass‐transition temperatures (290–330 °C), excellent thermal stability (>500 °C), low dielectric constants (2.77–3.01), low refractive indices, and low birefringence values (0.0019–0.0030). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2567–2578, 2006  相似文献   

4.
Aliphatic polyimides containing adamantyl units (APIs) were prepared by the poly(addition/condensation) of a dianhydride bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic 2,3 : 5,6-dianhydride with a rigid diamine, 1,3-diaminoadamantane or 3,3′-diamino-1,1′-biadamantyl, and a flexible diamine, 4,4′-methylenebis(cyclohexylamine) or 1,4-cyclohexanediamine. One-step polymerizations were conducted at 80–200°C in m-cresol, producing APIs with inherent viscosities up to 0.53 dL g−1. These APIs are soluble in haloalkanes, m-cresol, and sulfuric acid and show high thermal stability and excellent transparency. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3584–3590, 1999  相似文献   

5.
6.
Novel highly fluorinated polyimides containing hexafluoronaphthylene fragment in the main chain were prepared by the two-stage polymerization of 2,7- and 2,6-diaminohexafluoronaphthalenes with 4,4′-oxydiphthalic anhydride: polycondensation in a solution at 80 °C followed by high-temperature solid-state chain extension. The influence of hexafluoronaphthylene fragment isomerism on the key polyimide features - molecular weight, thermal stability, solubility, optical properties - was characterized. Polyimides based on 2,7-diaminohexafluoronaphthalene or easily accessible mixture of isomeric diamines formed the flexible, transparent, and thermostable films.  相似文献   

7.
A series of novel ultralow dielectric porous polyimide (PI) films containing adamantane groups was prepared via the thermolysis of polyethylene glycol (PEG) oligomers mixed into PI matrix. Scanning electron microscopy results indicated that the porous PI films showed closed pores with an average diameter of 120 ± 10 nm. Good thermal properties with 5% weight loss temperature of 499 °C in air atmosphere and glass transition temperature in excess of 310 °C were shown for porous PI films. Notably, the ultralow dielectric constant of porous PI films with 1.85 at 1 MHz was obtained and revealed via broadband dielectric spectroscopy. The effects of the chemical structure of the PI matrix and PEG content on the decomposition behavior of PEG and the performance of porous films were investigated. Wide‐angle X‐ray diffraction results indicated that the PI matrix with large d‐spacing generated weaker interactions between the PEG and PI backbone than those of PI matrix with small d‐spacing. As a result, the PEG for the PI matrix with large d‐spacing was completely decomposed. As indicated by the broadband dielectric spectroscopy results, lower dielectric porous PI films were prepared when the PEG contents in the PI matrix increased from 0 to 20 wt %. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 549–559  相似文献   

8.
A facile method was developed to synthesize a new type of polyhedral oligomeric silsesquioxane (POSS). It contained a single amine group and seven aliphatic moieties on its corners. FT‐IR, 1H‐NMR, 13C‐NMR, 13C‐1H COSY, and 1H‐1H COSY confirmed that cages with eight corners were the main part of the product. This new POSS was used to modify the structure of hexamethylene diisocyanate trimer and then copolymerized with hexamethylene diisocyanate and poly (tetramethylene glycol) to get a serious of waterborne polyurethane (WPU)/POSS hybrid materials with low dielectric constants for microelectronics applications. The results showed that POSS particles were uniformly dispersed in the WPU dispersions. The WPU/POSS films did not show any macrophase separation, even when the POSS content was as high as 16%. As the POSS content increased from 0% to 16%, the tensile strength was increased from 2.3 to 7.3 MPa, the dielectric constant was decreased from about 2.9 to 2.0, and the thermal stability of the WPU/POSS was also improved.  相似文献   

9.
Aliphatic polyimides (P-XBTA) having inherent viscosities of 0.4–1.4 dL/g were readily synthesized by the high-pressure polycondensation of the salt monomers, composed of aliphatic diamines having various methylene chain lengths (X = 4–12) and 3,3′,4,4′-benzophenonetetracarboxylic acid (BTA), under 200–250 MPa at 200–320°C. The salt monomers with odd-numbered methylene units were found to be more susceptible to crosslinking than those containing even-numbered methylene chains. The polyimides having even-numbered methylene units were highly crystalline, whereas those with odd-numbered methylene chains were crosslinked and therefore amorphous with only one exception, i.e., P-11BTA. The thermal behavior of these polymers was also studied. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 39–47, 1998  相似文献   

10.
Two new triptycene‐containing bis(ether amine)s, 1,4‐bis(4‐aminophenoxy)triptycene ( 4 ) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)triptycene ( 6 ), were synthesized, respectively, from the nucleophilic chloro‐displacement reactions of p‐chloronitrobenzene and 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxytriptycene in the presence of potassium carbonate, followed by palladium‐catalyzed hydrazine reduction of the dinitro intermediates. The bis(ether amine)s were polymerized with six commercially available aromatic tetracarboxylic dianhydrides to obtain two series of novel triptycene‐based polyimides 8a – f and 9a – f by using a conventional two‐step synthetic method via thermal and chemical imidizations. All the resulting polyimides exhibited high enough molecular weights to permit the casting of flexible and strong films with good mechanical properties. Incorporation of trifluoromethyl groups in the polyimide backbones improves their solubility and decreases their dielectric constants. The fluorinated polyimides 9d and 9f derived from diamine 6 with 4,4′‐oxydiphthalic anhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), respectively, could afford almost colorless thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
For the purpose of increasing the mobility of residual bisphenol A dicyanate ester (BADCY) during the final stage of curing and achieving a complete reaction of cyanate groups, a small quantity of monofunctional phenol was added to BADCY to form an imidocarbonate, or a small quantity of monofunctional cyanate esters was added to form cyanate ester copolymers. The proposed structures were confirmed with Fourier transform infrared, elemental analysis, mass spectrometry, and NMR spectroscopy. The thermal properties of the cured cyanate esters were measured with dynamic mechanical analysis, thermogravimetric analysis, and dielectric analysis. These data were compared with those for the cured BADCY resin. The cured modified cyanate esters exhibited a lower dielectric constant, a lower dissipation factor, and lower moisture absorption than the cured BADCY system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2589–2600, 2004  相似文献   

12.
The isomeric diamine monomer 5(6)‐amino‐1‐(4‐aminophenyl)‐1,3,3‐trimethylindane (DAPI) was successfully synthesized via the dimerization of α‐methylstyrene followed by nitration and reduction. High molecular weight, soluble polyimides were synthesized via ester–acid solution imidization techniques and had glass‐transition temperature values ranging from 247 to 369 °C. The polymers were soluble in common organic solvents because of the asymmetric and nonplanar nature of DAPI and displayed good short‐term thermal stability by thermogravimetric analysis, as shown by their 5% weight‐loss values above 500 °C in air. The DAPI/(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) polyimide also showed 2‐h thermal stability at 400 °C under nitrogen, despite the partial aliphatic character. Refractive index values as low as 1.571 were observed for DAPI/6FDA, which allows an estimated dielectric constant of 2.47 to be derived. The permeation of O2 and N2 was conducted on thin dense films. The bulky, bent, and isomeric nature of DAPI imparted film‐forming membranes that permitted high O2 permeability. In combination with 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), DAPI had a good combination of O2 permeability and O2/N2 selectivity values of 2.8 Ba and 7.3, respectively. The polymerization method utilized to facilitate the cyclization of DAPI/BTDA to the polyimide affected the final thermal properties of the resulting polymer. The chemical imidization of DAPI/BTDA generated a polyimide with a glass‐transition temperature value of 311 °C and a 5% weight‐loss value in air of 457 °C. However, thermal and ester–acid imidization routes yielded an increase in the thermal properties. The ester–acid solution imidization of DAPI/BTDA produced a polymer glass‐transition temperature value of 333 °C and a 5% weight‐loss value of 525 °C in air. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2840–2854, 2000  相似文献   

13.
This work synthesized a series of new polyamides by direct polycondensation of 1,3-bis[4-(4-carboxyphenoxy)phenyl]adamantane ( I ) with various diamines. The diacid I was synthesized from 1,3-bis(4-hydroxyphenyl)adamantane in two steps. Polyamides III were soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and pyridine. The polyamides had medium inherent viscosities of 0.30–0.55 dL/g and number-average molecular weights (Mn) of 22,000–36,000. The polyamides III a and III b had tensile strengths of 59.8 and 77.5 MPa, elongation to breakage values of 5.8 and 7.6%, and initial moduli of 1.9 and 1.8 GPa, respectively. Their glass transition temperatures were found to be 219–295°C by means of differential scanning calorimetry (DSC). Dynamic mechanical analysis (DMA) reveals that the incorporation of rigid and bulky diamantane into polyamides III a and III b leads to high glass transition temperatures (Tgs), at 299 and 286°C, respectively. The decomposition temperatures of polyamides III at a 5% weight loss ranged from 388 to 416°C in air and from 408 to 435°C in N2 atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 785–792, 1998  相似文献   

14.
High molecular weight, soluble, amorphous, partially aliphatic polyimides were successfully synthesized using an ester acid high‐temperature solution imidization route, which allows one to control desired glass‐transition (Tg) and processing temperatures. This method involves the prereaction of aromatic dianhydrides with ethanol and a tertiary amine catalyst to form ester acids, followed by the addition of diamines. Subsequent thermal reaction forms fully cyclized polyimides. This reaction pathway eliminates the need for anhydrous solvents and overcomes the problem of salt formation commonly observed for nucleophilic, more‐basic aliphatic amines when utilizing the traditional polyamic acid synthesis route. The molar ratio of aromatic‐to‐aliphatic diamines was varied to generate a series of copolyimides with the chosen dianhydride and tailor the physical properties for specific adhesive applications. This series of copolyimides was characterized by their molecular weight, Tg, thermal stability, coefficient of thermal expansion, refractive index, and dielectric constant. Structure‐property relationships were established. The γ and β sub‐Tg viscoelastic properties were researched to understand their molecular origins. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1503–1512, 2002  相似文献   

15.
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)‐catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/°C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99–4.20 barrer and 5.55–7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3550–3561, 2007  相似文献   

16.
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004  相似文献   

17.
A novel adamantoxytriphenylamine‐containing diamine monomer, 4‐(1‐adamantoxy)‐4′,4″‐diaminotriphenylamine, was synthesized from readily available reagents. Two series of novel electroactive aromatic polyamides and polyimides with bulky 4‐(1‐adamantoxy)triphenylamine moieties were prepared from the newly synthesized diamine monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides, respectively. All the resulting polyamides and most of the polyimides were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. These polymers showed moderate to high glass transition temperatures in the range of 263–311 °C, and they were fairly stable up to a temperature above 480 °C (for polyamides) or 500 °C (for polyimides). Cyclic voltammograms of the polyamides and polyimides showed one pair of reversible redox waves with oxidation half‐wave potentials (E1/2) in the range of 0.78–0.81 and 0.97–1.05 V, respectively, versus Ag/AgCl in an acetonitrile solution. In addition, the polymers were found to display stable electrochromic properties by repeated cyclic scans between 0.0 and 1.1–1.2 V, with coloration change from a colorless or pale yellowish neutral form to a dark blue or bluish green oxidized form. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1740–1755, 2009  相似文献   

18.
A new trifluoromethyl‐substituted bis(ether amine) monomer, 2,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized. It led to a series of novel fluorinated polyimides by thermal and chemical imidization routes when reacted with various commercially available aromatic tetracarboxylic dianhydrides. Most of the polyimides obtained from both routes were soluble in many organic solvents, such as N,N‐dimethylacetamide. All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.3–0.6%, low dielectric constants of 2.52–3.27 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 377–436 nm. The glass‐transition temperatures of the polyimides were in the range of 244–297 °C, and the 5% weight‐loss temperatures were higher than 550 °C. For a comparative study, a series of analogous polyimides based on 2,7‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2001–2018, 2003  相似文献   

19.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   

20.
Block copolyimides based on aromatic dianhydrides and diamines copolymerized with diamino room temperature ionic liquid (RTIL) monomers were synthesized over a range of compositions. Specifically, two diamino RTILs, 1,3‐di(3‐aminopropyl) imidazolium bis[(trifluoromethyl)sulfonyl] imide ([DAPIM] [NTf2]) and 1,12‐di[3‐(3‐aminopropyl) imidazolium] dodecane bis[(trifluoromethyl) sulfonyl] imide ([C12 (DAPIM)2] [NTf2]2) were synthesized using a Boc protection method. The two RTILs were reacted with 2,2‐bis(3,4‐carboxylphenyl) hexafluoropropane dianhydride (6FDA) to produce 6FDA‐RTILs oligomers that formed the RTIL component for the block copolyimides. The oligomers were reacted with 6FDA and m‐phenylenediamine (MDA) at oligomer concentration from 6.5 to 25.8 mol % to form block copolyimides. Increasing the concentration of the 6FDA‐RTIL oligomer in the block copolyimides resulted in a decrease in the thermal degradation temperature, glass transition temperature and an increase in the density. The gas permeability of the RTIL based block copolyimide decreased but the ideal permeability selectivity for CO2/CH4 gas pair increased relative to the pure 6FDA‐MDA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4036–4046, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号